Goal

In the context of differential equations:
Given set of solution \subseteq full set of solutions
Does equality hold? “Measure” the size of the solution set.
In the context of differential equations:
Given set of solution \subseteq full set of solutions (in $\mathbb{C}[[x_1, \ldots, x_n]]$)
Does equality hold? “Meassure” the size of the solution set.
Example: Burgers’ equation

\[\frac{\partial^2}{\partial x^2} u(t, x) = -\frac{\partial}{\partial t} u(t, x) - 2u(t, x)\frac{\partial}{\partial x} u(t, x) \]

Ansatz \(u(t, x) = \sum_{i,j} a_{i,j} \frac{t^i x^j}{i!j!} \)
Example: Burgers’ equation

\[\frac{\partial^2}{\partial x^2} u(t, x) = - \frac{\partial}{\partial t} u(t, x) - 2u(t, x) \frac{\partial}{\partial x} u(t, x) \]

Ansatz \(u(t, x) = \sum_{i,j} a_{i,j} \frac{t^i x^j}{i! j!} \implies a_{0,2} = -a_{1,0} - 2a_{0,0}a_{0,1}. \)
Example: Burgers’ equation

\[\frac{\partial^2}{\partial x^2} u(t, x) = -\frac{\partial}{\partial t} u(t, x) - 2u(t, x) \frac{\partial}{\partial x} u(t, x) \]

Ansatz \(u(t, x) = \sum_{i,j} a_{i,j} \frac{t^i x^j}{i! j!} \implies a_{0,2} = -a_{1,0} - 2a_{0,0}a_{0,1}. \)
Example: Burgers’ equation

\[\frac{\partial^2}{\partial x^2} u(t, x) = -\frac{\partial}{\partial t} u(t, x) - 2u(t, x) \frac{\partial}{\partial x} u(t, x) \]

Ansatz \(u(t, x) = \sum_{i,j} a_{i,j} t^i x^j \implies a_{0,2} = -a_{1,0} - 2a_{0,0}a_{0,1} \).

\(2\ell + 1 \) free coefficients up to order \(\ell \).
(Radical) differential ideals represent differential equations.
(Radical) differential ideals represent differential equations.
Number of free coefficients \cong dimension of the residue class ring.
(Radical) differential ideals represent differential equations. Number of free coefficients \cong dimension of the residue class ring. Prime decomposition of the differential ideal.
(Radical) differential ideals represent differential equations. Number of free coefficients \(\cong \) dimension of the residue class ring. Prime decomposition of the differential ideal.

Theorem (Dimension polynomial, Kolchin)

Let \(I \) be a differential prime ideal.

1. There is a dimension polynomial \(\omega_I(\ell) \in \mathbb{Q}[\ell] \), which ultimately describes the number of free coefficients up to order \(\ell \).
(Radical) differential ideals represent differential equations. Number of free coefficients \cong dimension of the residue class ring. Prime decomposition of the differential ideal.

Theorem (Dimension polynomial, Kolchin)

Let I be a differential prime ideal.

1. There is a **dimension polymon** $\omega_I(\ell) \in \mathbb{Q}[\ell]$, which ultimately describes the number of free coefficients up to order ℓ.
2. (Further properties)
The dimension polynomial

(Radical) differential ideals represent differential equations. Number of free coefficients \cong dimension of the residue class ring. Prime decomposition of the differential ideal.

Theorem (Dimension polynomial, Kolchin)

Let I be a differential prime ideal.

1. There is a dimension polynomial $\omega_I(\ell) \in \mathbb{Q}[\ell]$, which ultimately describes the number of free coefficients up to order ℓ.

2. (Further properties)

Let $J \supseteq I$ be another differential prime ideal.

3. $I = J$ iff $\omega_I = \omega_J$.
(Radical) differential ideals represent differential equations.
Number of free coefficients \(\cong \) dimension of the residue class ring.
Prime decomposition of the differential ideal.
Decomposition into characterizable differential ideals suffices.

Theorem (Dimension polynomial)

Let \(I \) be a characterizable differential ideal.

1. There is a dimension polynomial \(\omega_I(\ell) \in \mathbb{Q}[\ell] \), which ultimatively describes the number of free coefficients up to order \(\ell \).

2. (Further properties)

Let \(J \supseteq I \) be another characterizable differential ideal.

3. \(I = J \) iff \(\omega_I = \omega_J \) and the degrees of the equations in the simple differential systems, which describe \(I \) and \(J \), are equal.
Example: Burgers’ equation (cont.)

\[
\frac{\partial^2}{\partial x^2} u(t, x) = -\frac{\partial}{\partial t} u(t, x) - 2u(t, x) \frac{\partial}{\partial x} u(t, x)
\]

The dimension polynomial is \(2\ell + 1\).
Example: Burgers’ equation (cont.)

\[
\frac{\partial^2}{\partial x^2} u(t, x) = -\frac{\partial}{\partial t} u(t, x) - 2u(t, x) \frac{\partial}{\partial x} u(t, x)
\]

The dimension polynomial is \(2\ell + 1\).

Maple:

\[
\left\{ c_1 - \tanh(c_1 x + c_2 t + c_3) - \frac{c_2}{2c_1} \left| c_1, c_2, c_3 \in \mathbb{C}, c_1 \neq 0 \right. \right\}
\]
Problems of the dimension polynomial

- Decomposition necessary; dimension polynomial not additive.
- Imprecise: only dimension.
- Prescribing initial values for differential equations impossible.
- Non-generic center of expansion:
 \[t \cdot \frac{\partial}{\partial t} f(t) = 1 \text{ around } t = 0. \]
Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
2. $c(A^1) = \infty$ (formal symbol in the polynomial ring $\mathbb{Z}[\infty]$)
Algebraic counting polynomial \(c \)

Defined for constructible sets.

1. \(c(V) = |V| \) if \(V \) finite
2. \(c(\mathbb{A}^1) = \infty \) (formal symbol in the polynomial ring \(\mathbb{Z}[\infty] \))
3. \(c(U \cup V) = c(U) + c(V) \)
Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
2. $c(\mathbb{A}^1) = \infty$ (formal symbol in the polynomial ring $\mathbb{Z}[\infty]$)
3. $c(U \sqcup V) = c(U) + c(V)$
4. $c(F) = c(B) \cdot c(\text{fiber})$ if well defined for coordinate proj. $F \rightarrow B$.

Example:

$c(V) = c(V) + c(V)$ by (3)
$c(V) = c(V) + 1$ by (1)
$c(V) = 2 \cdot c(V) + 1$ by (1), (4)
$c(V) = 2 \cdot \infty - 1$ by (1), (2), (3)

Well-defined, algorithmic, $\deg \infty(c(V)) = \dim(V)$.

Theorem (Plesken) Let $U \subseteq V$ constructible. Then $U = V$ iff $c(U) = c(V)$.

Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
2. $c(\mathbb{A}^1) = \infty$ (formal symbol in the polynomial ring $\mathbb{Z}[\infty]$)
3. $c(U \cup V) = c(U) + c(V)$
4. $c(F) = c(B) \cdot c(\text{fiber})$ if well defined for coordinate proj. $F \rightarrow B$.

Example

$\begin{align*}
c(\begin{array}{c}
\end{array}) &= c(\begin{array}{c}
\end{array}) + c(\begin{array}{c}
\end{array}) \\
&= c(\begin{array}{c}
\end{array}) + 1 \\
&= 2 \cdot c(\begin{array}{c}
\end{array}) + 1 \\
&= 2 \cdot \infty - 1 \\
&= 2 \cdot \infty
\end{align*}$
Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
2. $c(A^1) = \infty$ (formal symbol in the polynomial ring $\mathbb{Z}[\infty]$)
3. $c(U \cup V) = c(U) + c(V)$
4. $c(F) = c(B) \cdot c(\text{fiber})$ if well defined for coordinate proj. $F \to B$.

Example

\[
\begin{align*}
c(\text{——————}) &= c(\text{——————}) + c(\cdot) \quad \text{by (3)} \\
&= c(\text{——————}) + 1 \quad \text{by (1)}
\end{align*}
\]
Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
2. $c(\mathbb{A}^1) = \infty$ (formal symbol in the polynomial ring $\mathbb{Z}[\infty]$)
3. $c(U \cup V) = c(U) + c(V)$
4. $c(F) = c(B) \cdot c(\text{fiber})$ if well defined for coordinate proj. $F \to B.$

Example

\[
c\left(\begin{array}{c}
\end{array}\right) = c\left(\begin{array}{c}
\end{array}\right) + c\left(\begin{array}{c}
\end{array}\right) \quad \text{by (3)}
\]
\[
= c\left(\begin{array}{c}
\end{array}\right) + 1 \quad \text{by (1)}
\]
\[
= 2 \cdot c\left(\begin{array}{c}
\end{array}\right) + 1 \quad \text{by (1), (4)}
\]
Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
2. $c(\mathbb{A}^1) = \infty$ (formal symbol in the polynomial ring $\mathbb{Z}[\infty]$)
3. $c(U \cup V) = c(U) + c(V)$
4. $c(F) = c(B) \cdot c(\text{fiber})$ if well defined for coordinate proj. $F \rightarrow B$.

Example

\[
c(\begin{array}{c}
\cdot \\
\end{array}) = c(\begin{array}{c}
\cdot \end{array}) + c(\begin{array}{c}
\cdot \\
\end{array}) \quad \text{by (3)}
\]
\[
= c(\begin{array}{c}
\cdot \\
\end{array}) + 1 \quad \text{by (1)}
\]
\[
= 2 \cdot c(\begin{array}{c}
\cdot \\
\end{array}) + 1 \quad \text{by (1), (4)}
\]
\[
= 2 \cdot (\infty - 1) + 1 = 2 \cdot \infty - 1 \quad \text{by (1), (2), (3)}
\]
Algebraic counting polynomial \(c \)

Defined for constructible sets.

1. \(c(V) = |V| \) if \(V \) finite
2. \(c(\mathbb{A}^1) = \infty \) (formal symbol in the polynomial ring \(\mathbb{Z}[\infty] \))
3. \(c(U \sqcup V) = c(U) + c(V) \)
4. \(c(F) = c(B) \cdot c(\text{fiber}) \) if well defined for coordinate proj. \(F \twoheadrightarrow B \).

Example

\[
c\left(\begin{array}{c}
 _ \\
 _ \\
 _ \\
 _ \\
\end{array}\right) = c\left(\begin{array}{c}
 _ \\
 _ \\
 _ \\
 _ \\
\end{array}\right) + c(\ldots) \quad \text{by (3)}
\]

\[
= c\left(\begin{array}{c}
 _ \\
 _ \\
 _ \\
 _ \\
\end{array}\right) + 1 \quad \text{by (1)}
\]

\[
= 2 \cdot c\left(\begin{array}{c}
 _ \\
 _ \\
 _ \\
\end{array}\right) + 1 \quad \text{by (1), (4)}
\]

\[
= 2 \cdot (\infty - 1) + 1 = 2 \cdot \infty - 1 \quad \text{by (1), (2), (3)}
\]

Well-defined, algorithmic, \(\deg_{\infty}(c(V)) = \dim(V) \).
Algebraic counting polynomial c

Defined for constructible sets.

1. $c(V) = |V|$ if V finite
2. $c(\mathbb{A}^1) = \infty$ (formal symbol in the polynomial ring \(\mathbb{Z}[\infty] \))
3. $c(U \sqcup V) = c(U) + c(V)$
4. $c(F) = c(B) \cdot c(\text{fiber})$ if well defined for coordinate proj. $F \twoheadrightarrow B$.

Example

\[
c\left(\begin{array}{c}
\end{array}\right) = c\left(\begin{array}{c}
\end{array}\right) + c\left(\begin{array}{c}
\end{array}\right) \quad \text{by (3)}
\]
\[
= c\left(\begin{array}{c}
\end{array}\right) + 1 \quad \text{by (1)}
\]
\[
= 2 \cdot c\left(\begin{array}{c}
\end{array}\right) + 1 \quad \text{by (1), (4)}
\]
\[
= 2 \cdot (\infty - 1) + 1 = 2 \cdot \infty - 1 \quad \text{by (1), (2), (3)}
\]

Well-defined, algorithmic, $\deg_\infty(c(V)) = \dim(V)$.

Theorem (Plesken)

Let $U \subseteq V$ constructible. Then $U = V$ iff $c(U) = c(V)$.
Differential counting polynomial

Idea: Counting polynomial for power series coefficients up to order ℓ.

\begin{align*}
\text{Theorem} & \quad \text{There exists a suitable countably infinite decomposition.}
\end{align*}

\begin{align*}
\text{Definition} & \quad \text{Applying the five axioms for the counting polynomial to the decomposition yields the } \ell\text{-th differential counting polynomial in } \mathbb{Z}[\infty, \aleph_0] \text{ (for every order } \ell \geq 0). \\
\text{Closed form:} & \quad \text{differential counting polynomial (if ultimately correct).}
\end{align*}

\begin{align*}
\text{Examples:} & \quad \infty^{2\ell+1} \infty^3 - \infty^{2\ell+1} + (\ell + 1) \infty^{\ell - 1} \\
\end{align*}
Differential counting polynomial

Idea: Counting polynomial for power series coefficients up to order ℓ.

Theorem

There exists a suitable countably infinite decomposition.
Differential counting polynomial

Idea: Counting polynomial for power series coefficients up to order ℓ.

Theorem

There exists a suitable countably infinite decomposition.

$$c(\mathbb{A}^1 \setminus \text{countably infinite set}) = \infty - \mathbb{N}_0 \in \mathbb{Z}[\infty, \mathbb{N}_0]$$
Differential counting polynomial

Idea: Counting polynomial for power series coefficients up to order ℓ.

Theorem

There exists a suitable countably infinite decomposition.

\[5 \quad c(\mathbb{A}^1 \setminus \text{countably infinite set}) = \infty - \aleph_0 \in \mathbb{Z}[\infty, \aleph_0] \]

Definition

Applying the five axioms for the counting polynomial to the decomposition yields the ℓ-th differential counting polynomial in $\mathbb{Z}[\infty, \aleph_0]$ (for every order $\ell \geq 0$).

Closed form: **differential counting polynomial** (if ultimatively correct).
Differential counting polynomial

Idea: Counting polynomial for power series coefficients up to order \(\ell \).

Theorem

There exists a suitable countably infinite decomposition.

\[c(\mathbb{A}^1 \setminus \text{countably infinite set}) = \infty - \mathbb{N}_0 \in \mathbb{Z}[\infty, \mathbb{N}_0] \]

Definition

Applying the five axioms for the counting polynomial to the decomposition yields the \(\ell \)-th **differential counting polynomial** in \(\mathbb{Z}[\infty, \mathbb{N}_0] \) (for every order \(\ell \geq 0 \)).

Closed form: **differential counting polynomial** (if ultimatively correct).

Examples:

\[
\begin{align*}
\infty^{2\ell+1} \\
\infty^3 - \infty^2 + \infty - \mathbb{N}_0 \\
\infty^{\ell+2} - \infty^{\ell+1} + (\ell + 1)\infty^\ell - \ell\infty^{\ell-1}
\end{align*}
\]
Differential counting polynomial

Example

\[
\left\{ (u(t), v(t)) \in \mathbb{C}[[t - t_0]]^2 \mid v(t) \frac{\partial}{\partial t} u(t) - u(t) - \frac{1}{t} = 0, \frac{\partial^2}{\partial t^2} v(t) = 0 \right\}
\]

has differential counting polynomial \(\infty^3 - \infty^2 + \infty - \aleph_0 \) for \(t_0 \neq 0 \). All solutions are analytical.
Example

\[\left\{ \begin{aligned} (u(t), v(t)) &\in \mathbb{C}[[t - t_0]]^2 \\ v(t) \frac{\partial}{\partial t} u(t) - u(t) - \frac{1}{t} &= 0, \\ \frac{\partial^2}{\partial t^2} v(t) &= 0 \end{aligned} \right\} \]

has differential counting polynomial \(\infty^3 - \infty^2 + \infty - \aleph_0 \) for \(t_0 \neq 0 \). All solutions are analytical.

- Only unique if no \(\aleph_0 \) appears (\(\infty - \aleph_0 \triangleq \infty - \aleph_0 + 1 \)).
Differential counting polynomial

Example

\[\left\{ (u(t), v(t)) \in \mathbb{C}[[t - t_0]]^2 \mid v(t) \frac{\partial}{\partial t} u(t) - u(t) - \frac{1}{t} = 0, \frac{\partial^2}{\partial t^2} v(t) = 0 \right\} \]

has differential counting polynomial \(\infty^3 - \infty^2 + \infty - \aleph_0 \) for \(t_0 \neq 0 \). All solutions are analytical.

- Only unique if no \(\aleph_0 \) appears (\(\infty - \aleph_0 \cong \infty - \aleph_0 + 1 \)).
- Not algorithmic.
Differential counting polynomial

Example

\[
\{(u(t), v(t)) \in \mathbb{C}[\![t - t_0]\!]^2 \mid v(t) \frac{\partial}{\partial t} u(t) - u(t) - \frac{1}{t} = 0, \frac{\partial^2}{\partial t^2} v(t) = 0\}
\]

has differential counting polynomial \(\infty^3 - \infty^2 + \infty - \aleph_0\) for \(t_0 \neq 0\). All solutions are analytical.

- Only unique if no \(\aleph_0\) appears \((\infty - \aleph_0 \triangleq \infty - \aleph_0 + 1)\).
- Not algorithmic.
- Not clear if applying the 5 axioms always terminates.
Example

\[
\left\{ (u(t), v(t)) \in \mathbb{C}[t - t_0]^2 \ \bigg| \ v(t) \frac{\partial}{\partial t} u(t) - u(t) - \frac{1}{t} = 0, \ \frac{\partial^2}{\partial t^2} v(t) = 0 \right\}
\]

has differential counting polynomial \(\infty^3 - \infty^2 + \infty - \aleph_0 \) for \(t_0 \neq 0 \). All solutions are analytical.

- Only unique if no \(\aleph_0 \) appears (\(\infty - \aleph_0 \triangleq \infty - \aleph_0 + 1 \)).
- Not algorithmic.
- Not clear if applying the 5 axioms always terminates.

Theorem

The degree (in \(\infty \)) of the differential counting polynomial of a characterizable differential ideal \(I \) is its dimension polynomial \(\omega_I(\ell) \).
Theorem

If the system of differential equations is given by a simple system S without inequations then the differential counting polynomial is

$$
\left(\prod_{p \in S} \deg(p) \right) \cdot \infty^{\omega_I(\ell)},
$$

where I is the characterizable differential ideal of S.

The differential counting polynomial of

$$
\frac{\partial^2}{\partial x^2} u(t, x) + \frac{\partial}{\partial t} u(t, x) + 2 u(t, x) \frac{\partial}{\partial x} u(t, x) = 0,
$$

the Burgers' equation, is $\infty^{2\ell + 1}$.

Similarly: semilinear examples "from nature" (Ricatti, Navier-Stokes, Korteweg-de-Vries, Klein-Gordon, ...).
Theorem

If the system of differential equations is given by a simple system S without inequations then the differential counting polynomial is

$$
\left(\prod_{p \in S} \deg(p) \right) \cdot \infty \omega_I(\ell),
$$

where I is the characterizable differential ideal of S.

The differential counting polynomial of

$$\frac{\partial^2}{\partial x^2} u(t, x) + \frac{\partial}{\partial t} u(t, x) + 2u(t, x) \frac{\partial}{\partial x} u(t, x) = 0,$$

the Burgers’ equation, is

$$\infty^{2\ell+1}.$$

Similarly: semilinear examples “from nature” (Ricatti, Navier-Stokes, Korteweg-de-Vries, Klein-Gordon, . . .).
Diff. counting polynomial: comparing solution sets

Theorem

Let \(P \subseteq Q \) sets of power series solutions.

1. If neither \(c(P) \) nor \(c(Q) \) contain the indeterminate \(\mathfrak{A}_0 \), then \(P = Q \) iff \(c(P) = c(Q) \).

2. In general one can estimate \(\mathfrak{A}_0 \) to show \(P \neq Q \).
Theorem

Let \(P \subseteq Q \) sets of power series solutions.

1. If neither \(c(P) \) nor \(c(Q) \) contain the indeterminate \(\aleph_0 \), then \(P = Q \) iff \(c(P) = c(Q) \).

2. In general one can estimate \(\aleph_0 \) to show \(P \neq Q \).

Example:

The ODE \(v(t) \cdot \frac{\partial}{\partial t} u(t) - u(t) = 0 \) has differential counting polynomial \(\infty^{\ell+2} - \infty^{\ell+1} + (\ell + 1)\infty^{\ell} - \ell\infty^{\ell-1} \).

Maple: \(v(t) \) arbitrary and \(u(t) = ce^{\int_0^t \frac{1}{v(h)} \, dh} \).

This set has differential counting polynomial \(\infty^{\ell+2} - \infty^{\ell+1} \).
Thank you for your attention!