Computing Unit Groups of Orders

Gabriele Nebe, Oliver Braun, Sebastian Schönnenbeck

Lehrstuhl D für Mathematik

Bad Boll, March 5, 2014
The classical Voronoi Algorithm

- Around 1900 Korkine, Zolotareff, and Voronoi developed a reduction theory for quadratic forms.
- The aim was to classify the densest lattice sphere packings in \(n \)-dimensional Euclidean space.
- Lattice \(L = \mathbb{Z}^{1 \times n} \), Euclidean structure on \(L \) given by some positive definite \(F \in \mathbb{R}^{n \times n}_{\text{sym}}, (x, y) = xFy^\text{tr} \).
- Voronoi described an algorithm to find all local maxima of the density function on the space of all \(n \)-dimensional positive definite \(F \).
- They are perfect forms (as will be defined below).
- There are only finitely many perfect forms up to the action of \(\text{GL}_n(\mathbb{Z}) \), the unit group of the order \(\mathbb{Z}^{n \times n} \).
- Later, Voronoi’s algorithm has been used to compute generators and relations for \(\text{GL}_n(\mathbb{Z}) \) but also its integral homology groups.
- It has been generalised to other situations: compute integral normalizer, the automorphism group of hyperbolic lattices and
- more general unit groups of orders.
Unit groups of orders

- A separable \(\mathbb{Q} \)-algebra, so \(A \cong \bigoplus_{i=1}^{s} D_{i}^{n_{i} \times n_{i}} \), is a direct sum of matrix rings over division algebras.

- An order \(\Lambda \) in \(A \) is a subring that is finitely generated as a \(\mathbb{Z} \)-module and such that \(\langle \Lambda \rangle_{\mathbb{Q}} = A \).

- Its unit group is \(\Lambda^* := \{ u \in \Lambda \mid \exists v \in \Lambda, uv = 1 \} \).

- Know in general: \(\Lambda^* \) is finitely generated.

- Example: \(A = K \) a number field, \(\Lambda = O_{K} \), its ring of integers. Then Dirichlet’s unit theorem says that \(\Lambda^* \cong \mu_{K} \times \mathbb{Z}^{r+s-1} \).

- Example: \(\Lambda = \langle 1, i, j, ij \rangle_{\mathbb{Z}} \) with \(i^2 = j^2 = (ij)^2 = -1 \). Then \(\Lambda^* = \langle i, j \rangle \) the quaternion group of order 8.

- Example: \(A = \mathbb{Q}G \) for some finite group \(G \), \(\Lambda = \mathbb{Z}G \).

- Example: \(A \) a division algebra with \(\dim_{\mathbb{Z}(A)}(A) = d^2 > 4 \). Not much known about the structure of \(\Lambda^* \).

- Voronoi’s algorithm may be used to compute generators and relations for \(\Lambda^* \) and to solve the word problem.

- Seems to be practical for “small” \(A \) and for \(d = 3 \).
The classical Voronoi Algorithm
Korkine, Zolotareff, Voronoi, ∼ 1900.

Definition

- $\mathcal{V} := \{ X \in \mathbb{R}^{n \times n} \mid X = X^{tr} \}$ space of symmetric matrices
- $\sigma : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$, $\sigma(A, B) := \text{trace}(AB)$ Euclidean inner product on \mathcal{V}.
- for $F \in \mathcal{V}$, $x \in \mathbb{R}^{1 \times n}$ define $F[x] := xFx^{tr} = \sigma(F, x^{tr}x)$
- $\mathcal{V}^{>0} := \{ F \in \mathcal{V} \mid F \text{ positive definite } \}$
- for $F \in \mathcal{V}^{>0}$ define the minimum $\mu(F) := \min\{ F[x] : 0 \neq x \in \mathbb{Z}^{1 \times n} \}$ and $\mathcal{M}(F) := \{ x \in \mathbb{Z}^{1 \times n} \mid F[x] = \mu(F) \}$
- $\text{Vor}(F) := \{ \sum_{x \in \mathcal{M}(F)} a_xx^{tr}x \mid a_x \geq 0 \}$ the Voronoi domain
- F is called **perfect** $\iff \dim(\text{Vor}(F)) = \dim(\mathcal{V}) = \frac{n(n+1)}{2}$.

Remark

$\text{GL}_n(\mathbb{Z})$ acts on $\mathcal{V}^{>0}$ by $(F, g) \mapsto g^{-1}Fg^{-tr}$. Then

$$
\mathcal{M}(g^{-1}Fg^{-tr}) = \{ xg \mid x \in \mathcal{M}(F) \}
$$

$$
\text{Vor}(g^{-1}Fg^{-tr}) = g^{tr}\text{Vor}(F)g
$$
The classical Voronoi Algorithm
Korkine, Zolotareff, Voronoi, ∼ 1900.

Definition

- $\mathcal{V} := \{ X \in \mathbb{R}^{n \times n} \mid X = X^{tr} \}$ space of symmetric matrices
- $\sigma : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$, $\sigma(A, B) := \text{trace}(AB)$ Euclidean inner product on \mathcal{V}.
- for $F \in \mathcal{V}$, $x \in \mathbb{R}^{1 \times n}$ define $F[x] := xFx^{tr} = \sigma(F, x^{tr}x)$
- $\mathcal{V}^{>0} := \{ F \in \mathcal{V} \mid F$ positive definite $\}$
- for $F \in \mathcal{V}^{>0}$ define the minimum $\mu(F) := \min \{ F[x] : 0 \neq x \in \mathbb{Z}^{1 \times n} \}$ and $\mathcal{M}(F) := \{ x \in \mathbb{Z}^{1 \times n} \mid F[x] = \mu(F) \}$
- $\text{Vor}(F) := \{ \sum_{x \in \mathcal{M}(F)} a_x x^{tr} \mid a_x \geq 0 \}$ the Voronoi domain
- F is called perfect $\iff \dim(\text{Vor}(F)) = \dim(\mathcal{V}) = \frac{n(n+1)}{2}$.

Theorem (Voronoi)

(a) $\mathcal{T} := \{ \text{Vor}(F) \mid F \in \mathcal{V}^{>0}, \text{ perfect } \}$ forms a face to face tessellation of $\mathcal{V}^{\geq0}$.
(b) $\text{GL}_n(\mathbb{Z})$ acts on \mathcal{T} with finitely many orbits that may be computed algorithmically.
Example, generators for $\text{GL}_2(\mathbb{Z})$

- $n = 2$, $\dim(V) = 3$, $\dim(V^>\mathbb{R}^>) = 2$
- compute in affine section of the projective space
- $\mathcal{A}^\geq = \{ F \in V^\geq \mid \text{trace}(F) = 1 \}$
- $F_0 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, $\mu(F_0) = 2$, $\mathcal{M}(F_0) = \{ \pm(1, 0), \pm(0, 1), \pm(1, 1) \}$
- $\mathcal{A}^\geq \cap \text{Vor}(F_0) = \text{conv}(a = \begin{pmatrix} 10 \\ 00 \end{pmatrix}, b = \begin{pmatrix} 00 \\ 01 \end{pmatrix}, c = \frac{1}{2} \begin{pmatrix} 11 \\ 11 \end{pmatrix})$
Example, generators for $GL_2(\mathbb{Z})$

- $n = 2$, $\dim(V) = 3$, $\dim(V^{>0}/\mathbb{R}_{>0}) = 2$
- compute in affine section of the projective space
- $A^{\geq 0} = \{ F \in V^{\geq 0} \mid \text{trace}(F) = 1 \}$
- $F_0 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, $\mu(F_0) = 2$, $M(F_0) = \{ \pm(1, 0), \pm(0, 1), \pm(1, 1) \}$
- $A^{\geq 0} \cap \text{Vor}(F_0) = \text{conv}(a = \begin{pmatrix} 10 \\ 00 \end{pmatrix}, b = \begin{pmatrix} 00 \\ 01 \end{pmatrix}, c = \frac{1}{2} \begin{pmatrix} 11 \\ 11 \end{pmatrix})$
Example, generators for $\text{GL}_2(\mathbb{Z})$

- Compute neighbor: $F_1 \in \mathcal{V}^>^0$ so that $\text{Vor}(F_1) = \text{conv}(a, b, c')$.
- Linear equation on F_1: $\text{trace}(F_1a) = \text{trace}(F_1b) = 2$ and $\text{trace}(F_1c) > 2$.
- So $F_1 = F_0 + sX$ where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ generates $\langle a, b \rangle^\perp$.
- For $s = 2$ the matrix $F_1 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ has again 6 minimal vectors
- $\mathcal{M}(F_1) = \{ \pm(1, 0), \pm(0, 1), \pm(1, -1) \}$
- $\mathcal{A}^\geq^0 \cap \text{Vor}(F_1) = \text{conv}(a, b, c' := \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix})$
Example, generators for $GL_2(\mathbb{Z})$

- $\text{Stab}_{GL_2(\mathbb{Z})}(F_0) = \langle g = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, h = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$
- $(a, b) \cdot g = (b, c), (b, c) \cdot g = (c, a)$
- Compute isometry $t = \text{diag}(1, -1) \in GL_2(\mathbb{Z})$, so $t^{-1}F_0t^{-tr} = F_1$.
- Then $GL_2(\mathbb{Z}) = \langle g, h, t \rangle$.
\(\text{GL}_2(\mathbb{Z}) = \langle g, h, t \rangle \).

- \(\text{Stab}_{\text{GL}_2(\mathbb{Z})}(F_0) = \langle g = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, h = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle \)
- \((a, b) \cdot g = (b, c), (b, c) \cdot g = (c, a)\)
- Compute isometry \(t = \text{diag}(1, -1) \in \text{GL}_2(\mathbb{Z}) \), so \(t^{-1} F_0 t^{-tr} = F_1 \).
Variations of Voronoi’s algorithm

- Many authors used this algorithm to compute integral homology groups of $\text{SL}_n(\mathbb{Z})$ and related groups, as developed C. Soulé in 1978.

- **Max Köcher** developed a general Voronoi Theory for pairs of dual cones in the 1950s.
 \[\sigma : \mathcal{V}_1 \times \mathcal{V}_2 \to \mathbb{R} \]
 non degenerate and positive on the cones $\mathcal{V}_1^> \times \mathcal{V}_2^>$.
 discrete admissible set $D \subset \mathcal{V}_2^>$ used to define minimal vectors and perfection for $F \in \mathcal{V}_1^>$ and $\text{Vor}_D(F) \subset \mathcal{V}_2^>$.

- **J. Opgenorth** (2001) used Köcher’s theory to compute the integral normalizer $N_{\text{GL}_n(\mathbb{Z})}(G)$ for a finite unimodular group G.

- **M. Mertens** (Masterthesis, 2012) applied Köcher’s theory to compute automorphism groups of hyperbolic lattices.

- **This talk** will explain how to apply it to obtain **generators and relations** for **unit group of orders** in semi-simple rational algebras and an algorithm to solve the **word problem** in these generators.
Orders in semi-simple rational algebras.

The positive cone

- K some rational division algebra, $A = K^{n \times n}$
- $A_R := A \otimes Q \mathbb{R}$ semi-simple real algebra
- so A_R is isomorphic to a direct sum of matrix rings over of \mathbb{H}, \mathbb{R} or \mathbb{C}.
- A_R carries a “canonical” involution † (depending on the choice of the isomorphism) that we use to define symmetric elements:
- $V := \text{Sym}(A_R) := \{ F \in A_R \mid F^\dagger = F \}$
- $\sigma(F_1, F_2) := \text{trace}(F_1 F_2)$ defines a Euclidean inner product on V.
- In general the involution † will not fix the set A.

The simple A-module.

- Let $V = K^{1 \times n}$ denote the simple right A-module, $V_R = V \otimes Q \mathbb{R}$.
- For $x \in V$ we have $x^\dagger x \in V$.
- $F \in V$ is called positive if
 \[F[x] := \sigma(F, x^\dagger x) > 0 \] for all $0 \neq x \in V_R$.

Minimal vectors.

The discrete admissible set

- \mathcal{O} maximal order in K, L some \mathcal{O}-lattice in the simple A-module V
- $\Lambda := \text{End}_\mathcal{O}(L)$ is a maximal order in A with unit group $\Lambda^* := \text{GL}(L) = \{a \in A \mid aL = L\}$.

L-minimal vectors

Let $F \in \mathcal{V}^{>0}$.

- $\mu(F) := \mu_L(F) = \min\{F[\ell] \mid 0 \neq \ell \in L\}$ the L-minimum of F.
- $\mathcal{M}_L(F) := \{\ell \in L \mid F[\ell] = \mu_L(F)\}$ the finite set of L-minimal vectors.
- $\text{Vor}_L(F) := \{\sum_{x \in \mathcal{M}_L(F)} a_x x^\dagger x \mid a_x \geq 0\} \subset \mathcal{V}^{\geq0}$ Voronoi domain of F.
- F is called L-perfect $\iff \dim(\text{Vor}_L(F)) = \dim(\mathcal{V})$.

Theorem

$\mathcal{T} := \{\text{Vor}_L(F) \mid F \in \mathcal{V}^{>0}, \text{ L-perfect} \}$ forms a face to face tessellation of $\mathcal{V}^{\geq0}$. $
\Lambda^*$ acts on \mathcal{T} with finitely many orbits.
Generators for Λ^*

- Compute $\mathcal{R} := \{F_1, \ldots, F_s\}$ set of representatives of Λ^*-orbits on the L-perfect forms, such that their Voronoi-graph is connected.
- For all neighbors F of one of these F_i (so $\text{Vor}(F) \cap \text{Vor}(F_i)$ has codimension 1) compute some $g_F \in \Lambda^*$ such that $g_F \cdot F \in \mathcal{R}$.
- Then $\Lambda^* = \langle \text{Aut}(F_i), g_F \mid F_i \in \mathcal{R}, F \text{ neighbor of some } F_j \in \mathcal{R} \rangle$.

so here $\Lambda^* = \langle \text{Aut}(F_1), \text{Aut}(F_2), \text{Aut}(F_3), a, b, c, d, e, f \rangle$.
Example $Q_{2,3}$.

- Take the rational quaternion algebra ramified at 2 and 3,

 $Q_{2,3} = \langle i, j \mid i^2 = 2, j^2 = 3, ij = -ji \rangle = \langle \text{diag}(\sqrt{2}, -\sqrt{2}), \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \rangle$

 Maximal order $\Lambda = \langle 1, i, \frac{1}{2}(1 + i + ij), \frac{1}{2}(j + ij) \rangle$

- $V = A = Q_{2,3}$, $A_{\mathbb{R}} = \mathbb{R}^{2 \times 2}$, $L = \Lambda$

- Embed A into $A_{\mathbb{R}}$ using the maximal subfield $\mathbb{Q}[\sqrt{2}]$.

- Get three perfect forms:

 - $F_1 = \begin{pmatrix} 1 & 2 - \sqrt{2} \\ 2 - \sqrt{2} & 1 \end{pmatrix}$, $F_2 = \begin{pmatrix} 6 - 3\sqrt{2} & 2 \\ 2 & 2 + \sqrt{2} \end{pmatrix}$

 - $F_3 = \text{diag}(-3\sqrt{2} + 9, 3\sqrt{2} + 5)$
The tessellation for $\mathbb{Q}_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{2}]^{2\times2}$.

![Diagram of the tessellation]
\(\Lambda^*/\langle \pm 1 \rangle = \langle a, b, t \mid a^3, b^2, atbt \rangle \)
Easy solution of the word problem
The tesselation for $\mathbb{Q}_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{3}]^{2\times2}$.
Conclusion

- Algorithm works quite well for indefinite quaternion algebras over the rationals
- Obtain presentation and algorithm to solve the word problem
- For \(Q_{19,37} \) our algorithm computes the presentation within 5 minutes (288 perfect forms, 88 generators) whereas the Magma implementation “FuchsianGroup” does not return a result after four hours
- Reasonably fast for quaternion algebras with imaginary quadratic center or matrix rings of degree 2 over imaginary quadratic fields
- For the rational division algebra of degree 3 ramified at 2 and 3 compute presentation of \(\Lambda^* \), 431 perfect forms, 50 generators in about 10 minutes.
- Quaternion algebra with center \(\mathbb{Q}[\zeta_5] \): \(> 40,000 \) perfect forms.
- Masterthesis by Oliver Braun: The tessellation \(T \) can be used to compute the maximal finite subgroups of \(\Lambda^* \).
- Masterthesis by Sebastian Schönnenbeck: Compute integral homology of \(\Lambda^* \).
Calculating maximal finite subgroups
Minimal classes

Definition

Let $A, B \in \mathcal{V}^{>0}$. A and B are **minimally equivalent** if $\mathcal{M}_L(A) = \mathcal{M}_L(B)$. $C := \text{Cl}_L(A) = \{X \in \mathcal{V}^{>0} \mid \mathcal{M}_L(X) = \mathcal{M}_L(A)\}$ is the **minimal class** of A. In this case $\mathcal{M}_L(C) := \mathcal{M}_L(A)$. Call C **well-rounded** if $\mathcal{M}_L(C)$ contains a K-basis of $V = K^{1 \times n}$.

Remark

$A \in \mathcal{V}^{>0}$ is L-perfect if and only if $\text{Cl}_L(A) = \{\alpha A \mid \alpha \in \mathbb{R}_{>0}\}$.
Calculating maximal finite subgroups
Minimal classes

Definition
Let $A, B \in V^{>0}$. A and B are **minimally equivalent** if $M_L(A) = M_L(B)$.

$C := \text{Cl}_L(A) = \{ X \in V^{>0} \mid M_L(X) = M_L(A) \}$ is the **minimal class** of A.

In this case $M_L(C) := M_L(A)$. Call C **well-rounded** if $M_L(C)$ contains a K-basis of $V = K^{1 \times n}$.

Remark
$A \in V^{>0}$ is L-perfect if and only if $\text{Cl}_L(A) = \{ \alpha A \mid \alpha \in \mathbb{R}_{>0} \}$.

Remark
dim$_\mathbb{R}(V) -$ dim$_\mathbb{R}(\langle x^t x \mid x \in M_L(A) \rangle)$, the **perfection corank**, is constant on $\text{Cl}_L(A)$.
Calculating minimal classes

Theorem

Let $A \in \mathcal{V}^>0$ be L-perfect. Any codimension-k-face of $\text{Vor}_L(A)$ corresponds to a minimal class of perfection corank k, represented by

$$A + \frac{1}{2k} \sum_{i=1}^{k} \rho_i R_i = \frac{1}{k} \sum_{i=1}^{k} \left(A + \frac{\rho_i}{2} R_i \right) \in \mathcal{V}^>0$$

with facet vectors R_i and $\rho_i \in \mathbb{R}_{>0}$ such that $A + \rho_i R_i$ is a perfect neighbour of A (and the codimension-k-face in question is the intersection is the intersection of the facets with facet vectors R_i).
Calculating minimal classes

Theorem

Let \(A \in \mathcal{V}^{>0} \) be \(L \)-perfect. Any codimension-\(k \)-face of \(\text{Vor}_L(A) \) corresponds to a minimal class of perfection corank \(k \), represented by

\[
A + \frac{1}{2k} \sum_{i=1}^{k} \rho_i R_i = \frac{1}{k} \sum_{i=1}^{k} \left(A + \frac{\rho_i}{2} R_i \right) \in \mathcal{V}^{>0}
\]

with facet vectors \(R_i \) and \(\rho_i \in \mathbb{R}_{>0} \) such that \(A + \rho_i R_i \) is a perfect neighbour of \(A \) (and the codimension-\(k \)-face in question is the intersection is the intersection of the facets with facet vectors \(R_i \)).

Example: The minimal classes in dimension 2 over \(\mathbb{Z} \)

\(F_0 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \), \(\mathcal{M}(F_0) = \{ \pm(1, 0), \pm (0, 1), \pm (1, 1) \} \)

\(\mathcal{A}^{\geq 0} \cap \text{Vor}(F_0) = \text{conv} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right) \)

Facet vectors \(R_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), \(R_2 = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix} \), \(R_3 = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} \)

All perfect neighbours of \(F_0 \) are given by \(F_0 + 2R_i \), so \(\rho_i = 2 \) for all \(1 \leq i \leq 3 \).
Now consider the dual of the tesselation of $\mathcal{T} = \{ \text{Vor}(F) \mid F \in \mathcal{V}^> \text{ perfect} \}$.
Now consider the dual of the tesselation of $\mathcal{T} = \{\text{Vor}(F) \mid F \in \mathcal{V}^{>0} \text{ perfect}\}$.
Now consider the dual of the tesselation of $\mathcal{T} = \{\text{Vor}(F) \mid F \in \mathcal{V}^>0 \text{ perfect}\}$.

- The well-rounded classes have perfection corank 0 or 1. The corank 0 class is the perfect class of F_0.
- The corank 1 classes are represented by

 \[
 F_0 + R_1 = \begin{pmatrix}
2 & 0 \\
0 & 2
\end{pmatrix}
\]

 \[
 F_0 + R_2 = \begin{pmatrix}
4 & -2 \\
-2 & 2
\end{pmatrix}
\]

 \[
 F_0 + R_3 = \begin{pmatrix}
2 & -2 \\
-2 & 4
\end{pmatrix}
\]

- The minimal classes represented by these three matrices are in the same orbit under $\text{GL}_2(\mathbb{Z})$. This is easily checked for well-rounded minimal classes using a theorem by A.-M. Bergé.

- The corank 2 class is represented by $\frac{1}{2} (2F_0 + R_1 + R_2) = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$.

- The corank 3 class is represented by $\frac{1}{2} (2F_0 + R_1 + R_2 + R_3) = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$.
Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

$G \leq GL(L)$ maximal finite $\implies G = \text{Aut}_L(C)$, where C is a well-rounded minimal class, such that $\dim(C \cap F(G)) = 1$.

$F(G) := \{ A \in V \mid A[g] = A \ \forall \ g \in G\}$

Remark

This theorem yields a finite set of finite subgroups of $GL(L)$, containing a set of representatives of conjugacy classes of maximal finite subgroups of $GL(L)$.

There are algorithmic methods to check if a finite subgroup is maximal finite and whether two maximal finite subgroups are conjugate. Therefore in the previous example, we obtain two conjugacy classes of maximal finite subgroups:

- The stabilizer of the perfect form F_0, which is isomorphic to D_{12}.
- The stabilizer of the corank 1 class, which is isomorphic to D_8.

These groups are indeed maximal finite.
Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

\[G \leq \text{GL}(L) \text{ maximal finite} \implies G = \text{Aut}_L(C), \text{ where } C \text{ is a well-rounded minimal class, such that } \dim(C \cap F(G)) = 1. \]

\[F(G) := \{ A \in V \mid A[g] = A \forall g \in G \} \]

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set of representatives of conjugacy classes of maximal finite subgroups of GL(L).

- There are algorithmic methods to check if a finite subgroup is maximal finite and whether two maximal finite subgroups are conjugate.
Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

\[G \leq \text{GL}(L) \text{ maximal finite} \implies G = \text{Aut}_L(C), \text{ where } C \text{ is a well-rounded minimal class, such that } \dim(C \cap F(G)) = 1. \]

\[F(G) := \{ A \in V \mid A[g] = A \forall g \in G \} \]

Remark

This theorem yields a finite set of finite subgroups of \(\text{GL}(L) \), containing a set of representatives of conjugacy classes of maximal finite subgroups of \(\text{GL}(L) \).

- There are algorithmic methods to check if a finite subgroup is maximal finite and whether two maximal finite subgroups are conjugate.
- Therefore in the previous example, we obtain two conjugacy classes of maximal finite subgroups:
 The stabilizer of the perfect form \(F_0 \), which is isomorphic to \(D_{12} \).
 The stabilizer of the corank 1 class, which is isomorphic to \(D_8 \).
- These groups are indeed maximal finite.
Example: \(\mathbb{Q}(\sqrt{-6}) \)

\[O = \mathbb{Z}[\sqrt{-6}], \ L_0 = O \oplus O, \ L_1 = O \oplus p, \text{ where } p \mid (2). \]

Well-rounded minimal classes for \(\mathbb{Q}(\sqrt{-6}) \)

<table>
<thead>
<tr>
<th>(C)</th>
<th>(G = \text{Aut}_L(C))</th>
<th>max.</th>
<th>(C)</th>
<th>(G = \text{Aut}_L(C))</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>(\text{SL}(2, 3))</td>
<td>yes</td>
<td>(P_1)</td>
<td>(Q_8)</td>
<td>yes</td>
</tr>
<tr>
<td>(C_1)</td>
<td>(D_{12})</td>
<td>yes</td>
<td>(P_2)</td>
<td>(C_3 \times C_4)</td>
<td>yes</td>
</tr>
<tr>
<td>(C_2)</td>
<td>(D_{12})</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_3)</td>
<td>(C_4)</td>
<td>no</td>
<td>(C_1)</td>
<td>(D_8)</td>
<td>yes</td>
</tr>
<tr>
<td>(C_4)</td>
<td>(D_8)</td>
<td>yes</td>
<td>(C_2)</td>
<td>(C_4)</td>
<td>no</td>
</tr>
<tr>
<td>(D_1)</td>
<td>(D_8)</td>
<td>yes</td>
<td>(C_3)</td>
<td>(C_4)</td>
<td>no</td>
</tr>
<tr>
<td>(D_2)</td>
<td>(D_8)</td>
<td>yes</td>
<td>(C_4)</td>
<td>(D_{12})</td>
<td>yes</td>
</tr>
<tr>
<td>(D_3)</td>
<td>(C_2 \times C_2)</td>
<td>yes</td>
<td>(D_1)</td>
<td>(C_2 \times C_2)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(D_2)</td>
<td>(C_2 \times C_2)</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[\Rightarrow \text{GL}(L_0) \not\cong \text{GL}(L_1) \]
Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \text{End}_{\mathcal{O}}(L)$ for some \mathcal{O}-lattice L.
Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \text{End}_{\mathcal{O}}(L)$ for some \mathcal{O}-lattice L.

Target

Compute a $\mathbb{Z}\Lambda^*$-free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).
Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \text{End}_\mathcal{O}(L)$ for some \mathcal{O}-lattice L.

Target

Compute a $\mathbb{Z}\Lambda^*$-free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).

Basic idea

Find a cell complex with a suitable Λ^*-action and employ its cellular chain complex.
Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \text{End}_{\mathcal{O}}(L)$ for some \mathcal{O}-lattice L.

Target
Compute a $\mathbb{Z}\Lambda^*$-free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).

Basic idea
Find a cell complex with a suitable Λ^*-action and employ its cellular chain complex.

Reminder
$A_{\mathbb{R}} := A \otimes_{\mathbb{Q}} \mathbb{R}$ carries a “canonical” involution \dagger, $\mathcal{V} := \{ F \in A_{\mathbb{R}} \mid F^\dagger = F \}.$
Resolutions for Unit Groups of Orders

Setup: As before $A = K^{n \times n}$ for some rational division algebra K, \mathcal{O} a maximal order in K and $\Lambda = \text{End}_\mathcal{O}(L)$ for some \mathcal{O}-lattice L.

Target

Compute a $\mathbb{Z}\Lambda^*$-free resolution of \mathbb{Z} (which may then be used to compute e.g. the integral homology of Λ^*).

Basic idea

Find a cell complex with a suitable Λ^*-action and employ its cellular chain complex.

Reminder

$A_\mathbb{R} := A \otimes_\mathbb{Q} \mathbb{R}$ carries a “canonical” involution †, $\mathcal{V} := \{F \in A_\mathbb{R} \mid F^\dagger = F\}$. Λ^* acts on $\mathcal{V}^{>0}$ via $(g, F) \mapsto gFg^\dagger$.
The cell decomposition of $\mathcal{V}^>0$

Minimal classes

For $F \in \mathcal{V}^>0$ define $C_l(F) := \{F' \in \mathcal{V}^>0 \mid M_L(F') = M_L(F)\}$ the minimal class corresponding to F.

The decomposition $\mathcal{V}^>0$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

▶ Partial ordering on the minimal classes: $C \preceq C' \iff M_L(C) \subseteq M_L(C')$.

▶ Each minimal class is a convex set in \mathcal{V}.

▶ The decomposition as well as the partial ordering are compatible with the Λ^*-action.

▶ We have $C = \bigcup_{C \preceq C'} C'$.

The cellular chain complex

The decomposition yields an acyclic chain complex C, where C_n is the free Abelian group on the minimal classes in dimension n. C_n becomes a Λ^*-module by means of the Λ^*-action on \mathcal{V}.
The cell decomposition of $\mathcal{V}^{>0}$

<table>
<thead>
<tr>
<th>Minimal classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $F \in \mathcal{V}^{>0}$ define $\text{Cl}_L(F) := { F' \in \mathcal{V}^{>0} \mid \mathcal{M}_L(F') = \mathcal{M}_L(F) }$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.</td>
</tr>
</tbody>
</table>
The cell decomposition of $\mathcal{V}^{>0}$

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\text{Cl}_L(F) := \{ F' \in \mathcal{V}^{>0} \mid M_L(F') = M_L(F) \}$ the minimal class corresponding to F. $\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

- Partial ordering on the minimal classes: $C \preceq C' \iff M_L(C) \subseteq M_L(C')$.
The cell decomposition of $\mathcal{V}^{>0}$

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $C_{\mathcal{L}}(F) := \{F' \in \mathcal{V}^{>0} \mid \mathcal{M}_{\mathcal{L}}(F') = \mathcal{M}_{\mathcal{L}}(F)\}$ the minimal class corresponding to F.

$\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

- Partial ordering on the minimal classes: $C \preceq C' \iff \mathcal{M}_{\mathcal{L}}(C) \subset \mathcal{M}_{\mathcal{L}}(C')$.
- Each minimal class is a convex set in \mathcal{V}.
The cell decomposition of $\mathcal{V}^>0$

<table>
<thead>
<tr>
<th>Minimal classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $F \in \mathcal{V}^>0$ define $\text{Cl}_L(F) := {F' \in \mathcal{V}^>0 \mid \mathcal{M}_L(F') = \mathcal{M}_L(F)}$ the minimal class corresponding to F. $\mathcal{V}^>0$ decomposes into the disjoint union of all minimal classes.</td>
</tr>
</tbody>
</table>

Properties of this decomposition:

- Partial ordering on the minimal classes: $C \preceq C' \iff \mathcal{M}_L(C) \subseteq \mathcal{M}_L(C')$.
- Each minimal class is a convex set in \mathcal{V}.
- The decomposition as well as the partial ordering are compatible with the Λ^*-action.
The cell decomposition of $\mathcal{V}^>0$

Minimal classes

For $F \in \mathcal{V}^>0$ define $\text{Cl}_L(F) := \{ F' \in \mathcal{V}^>0 \mid \mathcal{M}_L(F') = \mathcal{M}_L(F) \}$ the minimal class corresponding to F.

$\mathcal{V}^>0$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

- Partial ordering on the minimal classes: $C \preceq C' \iff \mathcal{M}_L(C) \subset \mathcal{M}_L(C')$.
- Each minimal class is a convex set in \mathcal{V}.
- The decomposition as well as the partial ordering are compatible with the Λ^*-action.
- We have $\overline{C} = \bigcup_{C \preceq C'} C'$.
The cell decomposition of $\mathcal{V}^{>0}$

Minimal classes

For $F \in \mathcal{V}^{>0}$ define $\text{Cl}_L(F) := \{F' \in \mathcal{V}^{>0} \mid M_L(F') = M_L(F)\}$ the minimal class corresponding to F.

$\mathcal{V}^{>0}$ decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

- Partial ordering on the minimal classes: $C \preceq C' \iff M_L(C) \subset M_L(C')$.
- Each minimal class is a convex set in \mathcal{V}.
- The decomposition as well as the partial ordering are compatible with the Λ^*-action.
- We have $C = \bigcup_{C \preceq C'} C'$.

The cellular chain complex

The decomposition yields an acyclic chain complex C, where C_n is the free Abelian group on the minimal classes in dimension n. C_n becomes a Λ^*-module by means of the Λ^*-action on \mathcal{V}.
Assembling the information

Problem 1: The modules C_n are not necessarily free.
Assembling the information

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of \mathbb{Z} for the occurring stabilizers of cells and outputs a free resolution of \mathbb{Z} for Λ^*.
Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of \mathbb{Z} for the occurring stabilizers of cells and outputs a free resolution of \mathbb{Z} for Λ^*.

Problem 2: Some cells have infinite stabilisers.
Assembling the information

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of \mathbb{Z} for the occurring stabilizers of cells and outputs a free resolution of \mathbb{Z} for Λ^*.

Problem 2: Some cells have infinite stabilisers.
Solution: Consider only a certain retract of $\mathcal{V}^>0$.

Assembling the information

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of \mathbb{Z} for the occurring stabilizers of cells and outputs a free resolution of \mathbb{Z} for Λ^*.

Problem 2: Some cells have infinite stabilisers.

Solution: Consider only a certain retract of $\mathcal{V}^>^0$.

The well-rounded retract

- $F \in \mathcal{V}^>^0$ is called *well-rounded*, if $\mathcal{M}_L(F')$ contains a K-Basis of K^n.

}$\begin{align*}
\mathcal{V}^>^0, wr &:=
\{ F \in \mathcal{V}^>^0 | F \text{ well-rounded, } \mu_L(F) = 1 \}.
\end{align*}
Assembling the information

Problem 1: The modules C_n are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free resolutions of \mathbb{Z} for the occurring stabilizers of cells and outputs a free resolution of \mathbb{Z} for Λ^*.

Problem 2: Some cells have infinite stabilisers.
Solution: Consider only a certain retract of $\mathcal{V}^>0$.

The well-rounded retract

- $F \in \mathcal{V}^>0$ is called well-rounded, if $\mathcal{M}_L(F')$ contains a K-Basis of K^n.
- $\mathcal{V}_{\geq 1, wr} := \{F \in \mathcal{V}^>0 \mid F$ well-rounded, $\mu_L(F) = 1\}$.
The well-rounded retract

Properties of the well-rounded retract

In $\mathcal{V}_{1}^{0,wr}$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
- $\mathcal{V}_{1}^{0,wr}$ is a retract of \mathcal{V}_{1}^{0}, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- The group Λ^* acts on the space of positive definite forms.
- This space decomposes into cells in a Λ^*-compatible way.
- There is a subspace such that each cell in it is a polytope and has finite stabiliser in Λ^*.
- We may use this cellular decomposition and the finite stabilisers to construct a free $\mathbb{Z}\Lambda^*$-resolution of \mathbb{Z}.
The well-rounded retract

Properties of the well-rounded retract

In $V_{1, wr}^{0}$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
The well-rounded retract

Properties of the well-rounded retract
In $\mathcal{V}_{\geq 1}^{>0, wr}$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
The well-rounded retract

Properties of the well-rounded retract
In $\mathcal{V}_{\geq 1}^{\geq 0, wr}$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
- $\mathcal{V}_{\geq 1}^{\geq 0, wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).
The well-rounded retract

Properties of the well-rounded retract

In \(\mathcal{V}_{\geq 1}^{0, wr} \) we have:

- There are only finitely many \(\Lambda^* \)-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
- \(\mathcal{V}_{\geq 1}^{0, wr} \) is a retract of \(\mathcal{V}^{>0} \), especially we have that the cellular chain complex is again acyclic and \(H_0 \cong \mathbb{Z} \) (A. Ash, 1984).

Summary
The well-rounded retract

Properties of the well-rounded retract
In $\mathcal{V}_{\geq 1}^{\geq 0, wr}$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
- $\mathcal{V}_{\geq 1}^{0, wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- The group Λ^* acts on the space of positive definite forms.
The well-rounded retract

Properties of the well-rounded retract
In $\mathcal{V}_{\geq 1}^{>, wr}$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
- $\mathcal{V}_{\geq 1}^{>, wr}$ is a retract of $\mathcal{V}^>$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- The group Λ^* acts on the space of positive definite forms.
- This space decomposes into cells in a Λ^*-compatible way.
The well-rounded retract

Properties of the well-rounded retract

In $\mathcal{V}_{1, wr}^>$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
- $\mathcal{V}_{1, wr}^>$ is a retract of $\mathcal{V}^>$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- The group Λ^* acts on the space of positive definite forms.
- This space decomposes into cells in a Λ^*-compatible way.
- There is a subspace such that each cell in it is a polytope and has finite stabiliser in Λ^*.
The well-rounded retract

Properties of the well-rounded retract
In $\mathcal{V}_{\geq 1}^{>0, wr}$ we have:

- There are only finitely many Λ^*-orbits in any dimension and every occurring stabiliser is finite.
- The topological closure of each cell is a polytope.
- $\mathcal{V}_{\geq 1}^{>0, wr}$ is a retract of $\mathcal{V}^{>0}$, especially we have that the cellular chain complex is again acyclic and $H_0 \cong \mathbb{Z}$ (A. Ash, 1984).

Summary

- The group Λ^* acts on the space of positive definite forms.
- This space decomposes into cells in a Λ^*-compatible way.
- There is a subspace such that each cell in it is a polytope and has finite stabiliser in Λ^*.
- We may use this cellular decomposition and the \textit{finite} stabilisers to construct a free $\mathbb{Z}\Lambda^*$-resolution of \mathbb{Z}.
Example 1: Linear Groups over Imaginary Quadratic Integers

\[\mathbb{Q}(\sqrt{-5}) \]
Example 1: Linear Groups over Imaginary Quadratic Integers

\[\mathbb{Q}(\sqrt{-5}) \]

\[K := \mathbb{Q}(\sqrt{-5}), \ A := K^{2 \times 2}, \ \mathcal{O} := \mathbb{Z}[\sqrt{-5}]. \]
\[\Lambda_i := \text{End}_\mathcal{O}(L_i) \text{ where } L_1 := \mathcal{O}^2 \text{ and } L_2 := \mathcal{O} \oplus \wp \text{ where } \wp^2 = (2). \]
Example 1: Linear Groups over Imaginary Quadratic Integers

\[\mathbb{Q}(\sqrt{-5}) \]

\[K := \mathbb{Q}(\sqrt{-5}), \ A := K^{2 \times 2}, \ \mathcal{O} := \mathbb{Z}[\sqrt{-5}] \]
\[\Lambda_i := \text{End}_\mathcal{O}(L_i) \text{ where } L_1 := \mathcal{O}^2 \text{ and } L_2 := \mathcal{O} \oplus \wp \text{ where } \wp^2 = (2). \]

1. \(G_1 := \text{GL}(L_1): \)

\[H_n(G_1, \mathbb{Z}) = \begin{cases}
C_2^5 & n = 1 \\
C_2^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_2^8 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases} \]
Example 1: Linear Groups over Imaginary Quadratic Integers

\[\mathbb{Q}(\sqrt{-5}) \]

\[K := \mathbb{Q}(\sqrt{-5}), \ A := K^{2 \times 2}, \ \mathcal{O} := \mathbb{Z}[\sqrt{-5}]. \]
\[\Lambda_i := \text{End}_\mathcal{O}(L_i) \text{ where } L_1 := \mathcal{O}^2 \text{ and } L_2 := \mathcal{O} \oplus \wp \text{ where } \wp^2 = (2). \]

1. \(G_1 := \text{GL}(L_1): \)

\[\mathcal{H}_n(G_1, \mathbb{Z}) = \begin{cases}
C_2^5 & n = 1 \\
C_4^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_8^2 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases} \]

2. \(G_2 := \text{GL}(L_2): \)

\[\mathcal{H}_n(G_2, \mathbb{Z}) = \begin{cases}
C_2^3 & n = 1 \\
C_2^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_8^2 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases} \]

Especially:
\[G_1 \not\cong G_2. \]
Example 1: Linear Groups over Imaginary Quadratic Integers

$Q(\sqrt{-5})$

$K := Q(\sqrt{-5}), A := K^{2 \times 2}, \mathcal{O} := \mathbb{Z}[\sqrt{-5}]$.

$\Lambda_i := \text{End}_\mathcal{O}(L_i)$ where $L_1 := \mathcal{O}^2$ and $L_2 := \mathcal{O} \oplus \wp$ where $\wp^2 = (2)$.

1. $G_1 := \text{GL}(L_1)$:

$$H_n(G_1, \mathbb{Z}) = \begin{cases}
C_2^5 & n = 1 \\
C_2^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_2^8 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases}$$

2. $G_2 := \text{GL}(L_2)$:

$$H_n(G_2, \mathbb{Z}) = \begin{cases}
C_2^3 & n = 1 \\
C_2^2 \times C_{12} \times \mathbb{Z} & n = 2 \\
C_2^8 \times C_{24} & n = 3 \\
C_2^7 & n = 4
\end{cases}$$

Especially: $G_1 \not\cong G_2$.
Example 2: The well-rounded retract and the Voronoi domains

\[A = K = \left(\frac{2,3}{Q} \right), \; \mathcal{O} = \Lambda = \langle 1, i, j, k \rangle_{\mathbb{Z}} \]
Example 2: The well-rounded retract and the Voronoi domains

\[A = K = \left(\frac{2}{3} \right), \ O = \Lambda = \langle 1, i, j, k \rangle_{\mathbb{Z}} \]
Example 2: The well-rounded retract and the Voronoi domains

\[A = K = \left(\frac{2.3}{\mathbb{Q}} \right), \ O = \Lambda = \langle 1, i, j, k \rangle_{\mathbb{Z}} \]
Example 2: The well-rounded retract and the Voronoi domains

\[A = K = \left(\frac{2,3}{\mathbb{Q}} \right), \quad \mathcal{O} = \Lambda = \langle 1, i, j, k \rangle_{\mathbb{Z}} \]
Example 2: The well-rounded retract and the Voronoi domains

\[A = K = \left(\frac{2,3}{\mathbb{Q}} \right), \quad \mathcal{O} = \Lambda = \langle 1, i, j, k \rangle_{\mathbb{Z}} \]
A. Ash
Small-dimensional classifying spaces for arithmetic subgroups of general linear groups

Renaud Coulangeon, Gabriele Nebe
Maximal finite subgroups and minimal classes

C.T.C. Wall
Resolutions for extensions of groups