Aufgabe 1

Die Menge aller quadratischen $n \times n$ Matrizen über einem Körper bildet einen kommutativen Ring bzgl. der gewöhnlichen Matrizenmultiplikation und -addition genau dann, wenn $n = 1$ gilt.

☐ wahr ☐ falsch

Die Menge aller quadratischen Matrizen über einem Körper bildet einen kommutativen Ring bzgl. der gewöhnlichen Matrizenmultiplikation und -addition.

☐ wahr ☒ falsch

Die Menge aller quadratischen Matrizen über einem Körper K bildet einen kommutativen Ring bzgl. der gewöhnlichen Matrizenmultiplikation und -addition, falls K nur endlich viele Elemente hat.

☐ wahr ☒ falsch

Aufgabe 2

Eine quadratische Matrix A mit Einträgen in einem Körper K ist invertierbar genau dann, wenn ein $\lambda \in K \setminus \{0\}$ existiert, sodass $A = \lambda \cdot E$, wobei E die Einheitsmatrix beschreibt.

☐ wahr ☒ falsch

Eine quadratische Matrix mit Einträgen in einem Körper ist invertierbar genau dann, wenn alle Diagonaleinträge ungleich 0 sind.

☐ wahr ☒ falsch

Eine quadratische Matrix $A = (a_{ij})$ mit Einträgen in einem Körper und $a_{ii} \neq 0$ für alle i sowie $a_{ij} = 0$ für alle i, j mit $i \neq j$ ist stets invertierbar.

☒ wahr ☐ falsch

Eine quadratische Matrix $A = (a_{ij})$ mit Einträgen in einem Körper ist invertierbar genau dann, wenn $a_{ii} \neq 0$ und $a_{ij} = 0$ für alle $i \neq j$.

☐ wahr ☒ falsch
Aufgabe 3

Die transponierte Matrix zu \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) ist gegeben durch \(\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \).

- wahr
- falsch

Die transponierte Matrix zu \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) ist gegeben durch \(\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \).

- falsch
- wahr

Die transponierte Matrix zu \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) ist gegeben durch \(\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \).

- falsch
- wahr

Die transponierte Matrix zu \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) ist gegeben durch \(\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \).

- falsch
- wahr

Aufgabe 4

Berechnen Sie die Matrix \(C = (c_{ij}) \), gegeben durch das Produkt \(\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} \), und tragen Sie den Wert \(c_{11} \) (in arabischen Zahlen) in das folgende Kästchen ein:

- 1

Berechnen Sie die Matrix \(C = (c_{ij}) \), gegeben durch das Produkt \(\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} \), und tragen Sie den Wert \(c_{12} \) (in arabischen Zahlen) in das folgende Kästchen ein:

- 8

Berechnen Sie die Matrix \(C = (c_{ij}) \), gegeben durch das Produkt \(\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} \), und tragen Sie den Wert \(c_{21} \) (in arabischen Zahlen) in das folgende Kästchen ein:

- 2

Berechnen Sie die Matrix \(C = (c_{ij}) \), gegeben durch das Produkt \(\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} \), und tragen Sie den Wert \(c_{22} \) (in arabischen Zahlen) in das folgende Kästchen ein:

- 4
Aufgabe 5

Eine quadratische Matrix ist invertierbar genau dann, wenn ihre transponierte Matrix invertierbar ist.

☑ wahr ☐ falsch

Falls eine quadratische Matrix invertierbar ist, so ist ihre transponierte Matrix im Allgemeinen nicht invertierbar.

☐ wahr ☒ falsch

Aufgabe 6

Wir betrachten \mathbb{Q} als \mathbb{Q}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{Q} \to \mathbb{Q}$ mit $\alpha(x) = 3x$ linear?

☑ ja ☐ nein

Wir betrachten \mathbb{Q} als \mathbb{Q}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{Q} \to \mathbb{Q}$ mit $\alpha(x) = x + 3$ linear?

☐ ja ☒ nein

Wir betrachten \mathbb{Q} als \mathbb{Q}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{Q} \to \mathbb{Q}$ mit $\alpha(x) = 5x$ linear?

☑ ja ☐ nein

Wir betrachten \mathbb{Q} als \mathbb{Q}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{Q} \to \mathbb{Q}$ mit $\alpha(x) = x + 5$ linear?

☐ ja ☒ nein
Aufgabe 7

Wir betrachten \mathbb{R}^3 und \mathbb{R} als \mathbb{R}-Vektorräume. Ist die Abbildung $\alpha : \mathbb{R}^3 \rightarrow \mathbb{R}$, \(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 \) linear?

☒ ja ○ nein

Wir betrachten \mathbb{R}^3 und \mathbb{R} als \mathbb{R}-Vektorräume. Ist die Abbildung $\alpha : \mathbb{R}^3 \rightarrow \mathbb{R}$, \(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto x_1 + x_2 + x_3 \) linear?

☒ ja ○ nein

Wir betrachten \mathbb{R}^2 als \mathbb{R}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, \(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_1 + x_2 \end{pmatrix} \) linear?

☒ ja ○ nein

Wir betrachten \mathbb{R}^2 als \mathbb{R}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, \(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -x_1 \\ x_1 + x_2 \end{pmatrix} \) linear?

☒ ja ○ nein

Aufgabe 8

Wir betrachten \mathbb{C} als \mathbb{C}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{C} \rightarrow \mathbb{C}$, $z \mapsto z^2$ linear?

○ ja ☒ nein

Wir betrachten \mathbb{C} als \mathbb{C}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{C} \rightarrow \mathbb{C}$, $z \mapsto z^2 + 1$ linear?

○ ja ☒ nein

Wir betrachten \mathbb{C} als \mathbb{C}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{C} \rightarrow \mathbb{C}$, $z \mapsto z^3$ linear?

○ ja ☒ nein

Wir betrachten \mathbb{C} als \mathbb{C}-Vektorraum. Ist die Abbildung $\alpha : \mathbb{C} \rightarrow \mathbb{C}$, $z \mapsto z^2 + z + 1$ linear?

○ ja ☒ nein
Aufgabe 9

Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha : V \to W$ mit $\alpha(v_1) = w_1$, $\alpha(v_2) = w_2$ und $\alpha(v_3) = w_1 + w_2$.

☐ wahr ○ falsch

Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha : V \to W$ mit $\alpha(v_1) = w_2$, $\alpha(v_2) = w_1$ und $\alpha(v_3) = w_1 + w_2$.

☐ wahr ○ falsch

Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha : V \to W$ mit $\alpha(v_1) = w_1$, $\alpha(v_2) = w_1$ und $\alpha(v_3) = w_1 + w_2$.

☐ wahr ○ falsch

Sei V ein Vektorraum mit Basis $\{v_1, v_2, v_3\}$ und W ein Vektorraum mit Basis $\{w_1, w_2\}$. Dann gibt es eine lineare Abbildung $\alpha : V \to W$ mit $\alpha(v_1) = w_1$, $\alpha(v_2) = w_2$ und $\alpha(v_3) = 0$.

☐ wahr ○ falsch

Aufgabe 10

Sei K ein Körper. Die Abbildung $\alpha : K \to K$ mit $\alpha(x) = 0$ ist linear.

☐ wahr ○ falsch

Sei K ein Körper. Die Abbildung $\alpha : K \to K$ mit $\alpha(x) = 1$ ist linear.

○ wahr ☐ falsch

Sei K ein Körper. Die Abbildung $\alpha : K \to K$ mit $\alpha(x) = x$ ist linear.

☐ wahr ○ falsch

Sei K ein Körper. Die Abbildung $\alpha : K \to K$ mit $\alpha(x) = -1$ ist linear.

○ wahr ☐ falsch