A Sylow theorem for the integral group ring of $\text{PSL}(2, q)$

Leo Margolis
A Sylow theorem for the integral
group ring of $\PSL(2, q)$

Leo Margolis

August 26, 2014

Abstract: For $G = \PSL(2, p^f)$ denote by ZG the integral group ring over G and by $V(ZG)$ the group of units of augmentation 1 in ZG. Let r be a prime different from p. Using the so called HeLP-method we prove that units of r-power order in $V(ZG)$ are rationally conjugate to elements of G. As a consequence we prove that subgroups of prime power order in $V(ZG)$ are rationally conjugate to subgroups of G, if $p = 2$ or $f \leq 2$.

Let G be a finite group and ZG the integral group ring over G. Denote by $V(ZG)$ the group of units of augmentation 1 in ZG. We say that a finite subgroup U of $V(ZG)$ is rationally conjugate to a subgroup W of G, if there exists a unit $x \in \mathbb{Q}G$ such that $x^{-1}Ux = W$. The question if some, or even all, finite subgroups of $V(ZG)$ are rationally conjugate to subgroups of G was proposed by H. J. Zassenhaus in the ’60s and published in [Zas74]. This so called Zassenhaus Conjectures motivated a lot of research. E.g. A. Weiss proved the strongest version, that all finite subgroups of $V(ZG)$ are rationally conjugate to subgroups of G, provided G is nilpotent [Wei88] [Wei91]. K. W. Roggenkamp and L. L. Scott obtained a counterexample [Rog91] to this strong conjecture. The version, which asks whether all finite cyclic subgroups of $V(ZG)$ are rationally conjugate to subgroups of G, the so called First Zassenhaus Conjecture, is however still open, see e.g. [Her08a], [CMdR13]. Though mostly solvable groups were considered when studying such questions, there are some results available for non-solvable series of groups. E.g. a work on the symmetric groups [Pet76] or for Lie-groups of small rank [Ble99]. The groups $\PSL(2, q)$, which are also the object of study in this paper, found also some special attention in [Wag95], [Her07], [HHK09] or in [BK11]. In this paper we
will limit our attention to finite p-subgroups of $V(ZG)$.

One could ask, what a Sylow-like theorem could mean for $V(ZG)$. One variation, lets say a weak Sylow theorem, would be that every finite p-subgroup of $V(ZG)$ is isomorphic to some subgroup of G. A stronger result, say a strong Sylow theorem, would be, if every finite p-subgroup of $V(ZG)$ is even rationally conjugate to a subgroup of G. First Sylow-like results for integral group rings were obtained in [KR93]. Later M. A. Dokuchaev and S. O. Juriaans proved a strong Sylow theorem for special classes of solvable groups [DJ96] and M. Hertweck, C. Höfert and W. Kimmerle proved a weak Sylow theorem for $PSL(2,p^f)$, where $p = 2$ or $f \leq 2$. The results of this article are as follows:

Proposition 1: Let $G = PSL(2,p^f)$, let r be a prime different from p and let u be a torsion unit in $V(ZG)$ of r-power order. Then u is rationally conjugate to a group element.

Theorem 2: Let $G = PSL(2,p^f)$ such that $f \leq 2$ or $p = 2$. Then a strong Sylow theorem holds in $V(ZG)$.

1 HeLP-method and known results

Let G be a finite group. A very useful notion to study rational conjugacy of torsion units are partial augmentations: Let $u = \sum_{g \in G} a_g g \in ZG$ and x^G be the conjugacy class of the element $x \in G$ in G. Then $\varepsilon_x(u) = \sum_{g \in x^G} a_g$ is called the partial augmentation of u at x. This relates to rational conjugacy via:

Lemma 1.1 ([MRSW87, Th. 2.5]). Let $u \in V(ZG)$ be a torsion unit. Then u is rationally conjugate to a group element if and only if $\varepsilon_x(u^k) \geq 0$ for all $x \in G$ and all powers u^k of u.

It is well known that if $u \neq 1$ is a torsion unit in $V(ZG)$, then $\varepsilon_1(u) = 0$ by the so called Berman-Higman Theorem [Seh93, Prop. 1.4]. If $\varepsilon_x(u) \neq 0$, then the order of x divides the order of u [MRSW87, Th. 2.7], [Her06, Prop. 3.1]. Moreover the exponent of G and of $V(ZG)$ coincide [CL65]. We will use this facts in the following without further mentioning.
Let u be a torsion unit in $V(\mathbb{Z}G)$ of order n and ζ an n-th root of unity in some field K, whose characteristic does not divide n. Let ξ be an (not necessarily primitive) n-th root of unity in K and let φ be a K-representation of G. It was first obtained by Luther and Passi for K having characteristic 0 [LP89] and later generalized by Hertweck for positive characteristic [Her07] that the multiplicity of ξ as an eigenvalue of $\varphi(u)$, which we denote by $\mu(\xi, u, \varphi)$ and which is of cause a non-negative integer, may be computed as

$$
\mu(\xi, u, \varphi) = \frac{1}{n} \sum_{\substack{d|n \\ d \neq 1}} \text{Tr}_{Q(\xi)/Q}(\varphi(u^d)\xi^{-d}) + \frac{1}{n} \sum_{x \in \sigma} \varepsilon_x(u)\text{Tr}_{Q(\xi)/Q}(\varphi(x)\xi^{-1}),
$$

where as usual $\text{Tr}_{Q(\xi)/Q}(x) = \sum_{\sigma \in \text{Gal}(Q(\xi)/Q)} \sigma(x)$.

If u is of prime power order p^k for the first sum in the expression above we obtain

$$
\frac{1}{n} \sum_{\substack{d|n \\ d \neq 1}} \text{Tr}_{Q(\xi)/Q}(\varphi(u^d)\xi^{-d}) = \frac{1}{p} \mu(\xi^p, u^p, \varphi).
$$

Using these formulas to find possible partial augmentations for torsion units in integral group rings of finite groups is today called HeLP-method. For a diagonalizable matrix A we will write $A \sim (a_1, ..., a_n)$, if the eigenvalues of A, with multiplicities, are $a_1, ..., a_n$.

All subgroups of $G = \text{PSL}(2, p^f)$ were first known to Dickson [Dic01, Theorem 620]. Let $d = \text{gcd}(2, p - 1)$. There are cyclic groups of order p, $\frac{p^f - 1}{d}$ and $\frac{p^f - 1}{d}$ in G and every element of G lies in a conjugate of such a group. The p-Sylow subgroups are elementary-abelian, the Sylow subgroups for all other primes, which are odd, are cyclic and if $p \neq 2$ the 2-Sylow subgroup is dihedral or a Kleinian four-group. There are d conjugacy classes of elements of order p. If $g \in G$ is not of order p or 2 its only distinct conjugate in $\langle g \rangle$ is g^{-1}. Especially there is always only one conjugacy class of involutions. We denote by a a fixed element of order $\frac{p^f - 1}{d}$ and by b a fixed element of order $\frac{2^d - 1}{d}$.

The modular representation theory of $\text{PSL}(2, q)$ in defining characteristic is well known. All irreducible representations were first given by R. Brauer and C. Nesbitt [BN41]. The explicit Brauer table of $\text{SL}(2, q)$, which contains the Brauer table of $\text{PSL}(2, q)$, may be found in [Sri64]. However, I was not able to find the following Lemma in the literature, except, whitout proof, in Hertwecks preprint [Her07], so a short proof is included.
Lemma 1.2. Let $G = \text{PSL}(2, p^f)$ and $d = \gcd(2, p - 1)$. There are p-modular representations of G given by $\varphi_0, \varphi_1, \varphi_2, \ldots$ such that there is a $\frac{p^f - 1}{d}$-th primitive root of unity α and a $\frac{p^f + 1}{d}$-th primitive root of unity β satisfying

$$\varphi_k(b) \sim (1, \beta, \beta^{-1}, \beta^2, \beta^{-2}, \ldots, \beta^k, \beta^{-k})$$
$$\varphi_k(a) \sim (1, \alpha, \alpha^{-1}, \alpha^2, \alpha^{-2}, \ldots, \alpha^k, \alpha^{-k})$$

for every $k \in \mathbb{N}_0$.

Proof: The group $\text{SL}(2, q)$ acts on the vector space spanned by the homogenous polynomials in two commuting variables x, y of some fixed degree e extending the natural operation of the 2-dimensional vector space spanned by x, y, see e.g. [Alp86, p. 14-16]. Since

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} x^iy^j = (-1)^{i+j}x^iy^j$$

this action affords a $\text{PSL}(2, q)$-representation if and only if e is even and p is odd or $p = 2$, so let from now on e be even for odd p. Call this representation φ_0. Let γ be an eigenvalue of an element in $\text{SL}(2, q)$ mapping onto a under the natural projection from $\text{SL}(2, q)$ to $\text{PSL}(2, q)$. Then $\varphi_0(a)$ has the same eigenvalues as $\varphi_0 \left(\begin{pmatrix} \gamma & 0 \\ 0 & \gamma^{-1} \end{pmatrix} \right)$. Now

$$\begin{pmatrix} \gamma & 0 \\ 0 & \gamma^{-1} \end{pmatrix} x^iy^j = \gamma^{i-j}x^iy^j,$$

so the eigenvalues are $\{\gamma^{i-j} \mid 0 \leq i, j \leq d, i + j = e\} = \{(\gamma^d)^t \mid \frac{t}{d} \leq t \leq \frac{d}{2}\}$. Thus setting $\alpha = \gamma^d$ proves the first part of the claim.

Now let δ be an eigenvalue of an element in $\text{SL}(2, q)$ mapping onto b under the natural projection from $\text{SL}(2, q)$ to $\text{PSL}(2, q)$. The action of $\text{SL}(2, q)$ may of course be extended to $\text{SL}(2, q^2)$. So $\varphi_0(b)$ has the same eigenvalues as $\varphi_0 \left(\begin{pmatrix} \delta & 0 \\ 0 & \delta^{-1} \end{pmatrix} \right)$, where the matrix may be seen as an element in $\text{SL}(2, q^2)$. Then doing the same calculations as above and setting $\beta = \delta^d$ proves the Lemma.

Using the HeLP-method R. Wagner [Wag95] and Hertweck [Her07] obtained already some results about rational conjugacy of torsion units of prime power order in $\text{PSL}(2, q)$. Part of Wagners result was published in [BHK04].

Lemma 1.3. [Wag95] Let $G = \text{PSL}(2, p^f)$ and $f \leq 2$. If u is a unit of order p in $V(ZG)$, then u is rationally conjugate to a group element.

Remark: The HeLP-method does not suffice to prove rational conjugacy of units of order p in $V(Z\text{PSL}(2, p^f))$ if p is odd and $f \geq 3$. There is also no other method or idea
around how one could e.g. obtain, if units of order 3 in $V(\mathbb{Z}\text{PSL}(2, 27))$ are rationally conjugate to group elements or not.

Lemma 1.4. [Her07, Prop. 6.4] Let $G = \text{PSL}(2, p')$ and let r be a prime different from p. If u is a unit of order r in $V(\mathbb{Z}G)$, then u is rationally conjugate to an element of G.

Lemma 1.5. [Her07, Prop. 6.5] Let $G = \text{PSL}(2, p')$, let r be a prime different from p and u a torsion unit in $V(\mathbb{Z}G)$ of order r^n. Let $m < n$ and denote by S a set of representatives of conjugacy classes of elements of order r^m in G. Then $\sum_{x \in S} \varepsilon_x(u) = 0$. If moreover g is an element of order r^n in G, then $\mu(1, u, \varphi) = \mu(1, g, \varphi)$ for every p-modular Brauer character φ of G.

If one is interested not only in cyclic groups the following result is very useful. It may be found e.g. in [Seh93, Lemma 37.6] or in [Val94, Lemma 4].

Lemma 1.6. Let G be a finite group, U a finite subgroup of $V(\mathbb{Z}G)$ and H a subgroup of G isomorphic to U. If $\sigma : U \rightarrow H$ is an isomorphism such that $\chi(u) = \chi(\sigma(u))$ for all $u \in U$ and all irreducible complex characters χ of G, then U is rationally conjugate to H.

2 Proof of the results

We will first sum up some elementary number theoretical facts. The notation $a \equiv b \pmod{c}$ will mean, that a is congruent b modulo c.

Lemma 2.1. Let t and s be natural numbers such that s divides t and denote by ζ_t and ζ_s a primitive complex t-th root of unity and s-th root of unity respectively. Then

$$\text{Tr}_{\mathbb{Q}(\zeta_t) / \mathbb{Q}(\zeta_s)} = \mu(s) \frac{\varphi(t)}{\varphi(s)},$$

where μ denotes the Möbius function and φ Euler’s totient function. So for a prime r and natural numbers n, m with $m \leq n$ we have

$$\text{Tr}_{\mathbb{Q}(\zeta_n) / \mathbb{Q}(\zeta_r)} = \begin{cases} r^{n-1}(r - 1), & m = 0 \\ -r^{n-1}, & m = 1 \\ 0, & m > 1 \end{cases}$$
Let moreover \(i \) and \(j \) be integers prime to \(r \), then

\[
\text{Tr}_{\mathbb{Q}(\zeta^{m})/\mathbb{Q}}(\zeta_{r}^{i}\zeta_{r}^{-j}) = \begin{cases}
 r^{n-1}(r-1), & i \equiv j \pmod{r^{m}} \\
-r^{n-1}, & i \not\equiv j \pmod{r^{m}} \quad \text{and} \quad i \equiv j \pmod{r^{m-1}} \\
0, & i \not\equiv j \pmod{r^{m-1}}
\end{cases}
\]

Proof of Lemma 2.1: Let \(s = p_{1}^{f_{1}} \cdots p_{k}^{f_{k}} \) be the prime factorisation of \(s \). For a natural number \(l \) let \(I(l) = \{ i \in \mathbb{N} | 1 \leq i \leq l, \gcd(i, l) = 1 \} \). As is well known, \(\text{Gal}(\mathbb{Q}(\zeta_{s})/\mathbb{Q}) = \{ \sigma_{i} : \zeta_{i} \mapsto \zeta_{i}^{i} | i \in I(t) \} \). From this the case \(s = 1 \) follows immediately. Otherwise we have

\[
\text{Tr}_{\mathbb{Q}(\zeta_{s})/\mathbb{Q}}(\zeta_{s}) = \sum_{i \in I(l)} \zeta_{i}^{t} = \frac{\varphi(t)}{\varphi(s)} \sum_{i \in I(s)} \zeta_{i}^{t} = \frac{\varphi(t)}{\varphi(s)} \prod_{j=1}^{k} \sum_{i \in I(p_{j}^{f_{j}})} \zeta_{i}^{t}.
\]

Now \(\sum_{i \in I(p_{j}^{f_{j}})} \zeta_{i}^{t} = \begin{cases} -1, & f_{j} = 1 \\
0, & f_{j} > 1 \end{cases} \) and this gives the first formula. The other formulas are special cases of this general formula since \(\varphi(r^{n}) = (r-1)(r^{n-1}) \).

Proof of Proposition 1: Let \(G = \text{PSL}(2, p^{l}) \), let \(r \) be a prime different from \(p \) and let \(u \) be a torsion unit in \(V(\mathbb{Z}G) \) of order \(r^{m} \). Let \(\zeta \) be an \(r^{n} \)-th primitive complex root of unity and set \(\text{Tr}_{\mathbb{Q}(\zeta)/\mathbb{Q}} = \text{Tr} \). If \(n = 1 \), then by Lemma 1.4 \(u \) is rationally conjugate to an element in \(G \), so assume \(n \geq 2 \). Assume further that by induction \(u^{r} \) is rationally conjugate to an element in \(G \). Let \(m \) be a natural number such that \(m < n \).

We will proceed by induction on \(m \) to show that \(\varepsilon(x)(u) = 0 \), if the order of \(x \) is \(r^{m} \). If \(m = 0 \) this is the Berman-Higman Theorem and if \(r = 2 \) and \(m = 1 \) this follows from Lemma 1.5. So assume we know \(\varepsilon(x)(u) = 0 \) for \(o(x) < r^{m} \). Let \(l = \frac{r^{m-1}}{2} \) if \(r \) is odd and \(l = \frac{r^{m-2}}{2} \) if \(r = 2 \). Let \(\{ x_{i} | 1 \leq i \leq l, \gcd(i, r) = 1 \} \) be a full set of representatives of conjugacy classes of elements of order \(r^{m} \) in \(G \) such that \(x_{i}^{r} = x_{i} \) (this is possible by the group theoretical properties of \(G \) given above).

We will prove by induction on \(k \) that \(\varepsilon_{x_{i}}(u) = \varepsilon_{x_{j}}(u) \) for \(i \equiv \pm j \pmod{r^{m-k}} \). This is certainly true for \(k = 0 \) and once we establish it for \(k = m \), if \(r \) is odd, and \(k = m - 1 \), if \(r = 2 \), it will follow from Lemma 1.5 that \(\varepsilon_{x_{i}}(u) = 0 \) for all \(i \). So assume \(\varepsilon_{x_{i}}(u) = \varepsilon_{x_{j}}(u) \) for \(i \equiv \pm j \pmod{r^{m-k}} \). Since \(u^{r} \) is rationally conjugate to a group element, there exists a primitive \(r^{n-1} \)-th root of unity \(\zeta_{r^{n-1}} \) such that

\[
\varphi_{r}(u^{r}) \sim (1, \zeta_{r^{n-1}}, \zeta_{r^{n-1}}^{-1}, \zeta_{r^{n-1}}^{2}, \zeta_{r^{n-1}}^{-2}, \ldots, \zeta_{r^{n-1}}^{r^{k}}, \zeta_{r^{n-1}}^{-r^{k}}).
\]
Now all p-modular Brauer characters of G are real valued and thus we obtain that
\[
\varphi_k(u) \sim (1, a_1, a_1^{-1}, a_2, a_2^{-1}, \ldots, a_r, a_r^{-1}),
\]
where for every i we have a_i a root of unity such that $a_i^{m-k} \neq 1$. So for every primitive r^{m-k}-th root of unity ζ_{m-k} we have
\[\mu(\zeta_{m-k}, u, \varphi_k) = 0.\]
Let ζ_m be a primitive r^m-th root of unity such that we have
\[
\varphi_k(x_1) \sim (1, \zeta_m, \zeta_m^{-1}, \ldots, \zeta_m^{r-1})
\]
and set $\xi = \zeta_m^k$. Let S be a set of representatives of elements of G of r-power order not greater than r^m containing x_1, \ldots, x_i and let moreover α be a natural number prime to r such that $1 \leq \alpha \leq l$.

Thus $\mu(\xi^\alpha, u, \varphi_k) = 0$ and $\varepsilon_x(u) = 0$ for $o(x) < r^m$. From here on a sum over i will always mean a sum over all defined i, that will be $1 \leq i \leq l$ and $r \nmid i$. Then using the HeLP-method we get
\[
0 = \mu(\xi^\alpha, u, \varphi_k) = \frac{1}{r^m} \sum_{x \in S} \varepsilon_x(u) \mathrm{Tr}(\varphi_k(x)\xi^{-\alpha})
\]
\[
= \frac{1}{r^m} \sum_{x \in S} \varepsilon_x(u) \mathrm{Tr}(\varphi_k(x)\xi^{-\alpha}) + \frac{1}{r^m} \sum_{i} \varepsilon_{x_i}(u) \mathrm{Tr}(\varphi_k(x_i)\xi^{-\alpha})
\]
\[
= \frac{1}{r^m} \sum_{x \in S} \varepsilon_x(u) \mathrm{Tr}(\xi^{-\alpha}) + \frac{1}{r^m} \sum_{i} \varepsilon_{x_i}(u) \mathrm{Tr}((\xi^i + \xi^{-i})\xi^{-\alpha})
\]
\[
= \frac{1}{r^m} \sum_{x \in S} \varepsilon_x(u) \mathrm{Tr}(\xi^{-\alpha}) + \frac{1}{r^m} \sum_{i} \varepsilon_{x_i}(u) \mathrm{Tr}((\xi^i + \xi^{-i})\xi^{-\alpha}).
\]
\[
(1)
\]
In the third line we used that if $\tilde{\zeta}$ is a root of unity of r-power order such that $\tilde{\zeta}^{r^{m-k}} \neq 1$, then $\tilde{\zeta}^{r^m}$ has the same order as ζ and so $\mathrm{Tr}(\tilde{\zeta}\xi) = 0$ by Lemma 2.1. Note that as i is prime to r the congruence $i \equiv \alpha \pmod{r^{m-k}}$ implies $-i \neq \alpha \pmod{r^{m-k}}$ for $r^{m-k} \not\equiv \{1, 2\}$ and these exceptions don’t have to be considered by our assumptions on m and k.

There are now two cases to consider. First assume $k < m - 1$, so ξ is at least of order r^2. Then we have $\mu(\xi^\alpha, u, \varphi_k) = 0$ and using Lemma 2.1 in (1) we obtain
\[
0 = \frac{1}{r^m} \sum_{i} \varepsilon_{x_i}(u) \mathrm{Tr}((\xi^i + \xi^{-i})\xi^{-\alpha})
\]
\[
= \frac{1}{r^m} \sum_{i \equiv \alpha \pmod{r^{m-k}}} \varepsilon_{x_i}(u)(r^{n-1}(r - 1)) + \frac{1}{r^m} \sum_{i \equiv \alpha \pmod{r^{m-k}}} \varepsilon_{x_i}(u)(-r^{n-1})
\]
\[
= \sum_{i \equiv \alpha \pmod{r^{m-k}}} \varepsilon_{x_i}(u) - \frac{1}{r} \sum_{i \equiv \alpha \pmod{r^{m-k}}} \varepsilon_{x_i}(u).
\]
\[
(2)
\]
So
\[r \sum_{i \equiv \pm \alpha (r^{-k})} \xi_{x_i}(u) = \sum_{i \equiv \pm \alpha (r^{-k-1})} \xi_{x_i}(u). \]

But since by induction \(\xi_{x_i}(u) = \xi_{x_j}(u) \) for \(i \equiv \pm j \ (r^{-k}) \) the summands on the left hand side are all equal and since changing \(\alpha \) by \(r^{-k-1} \) does not change the right hand side of the equation we get \(\xi_{x_i}(u) = \xi_{x_j}(u) \) for \(i \equiv \pm j \ (r^{-k-1}) \).

Now consider \(k = m - 1 \), then \(\xi \) is a primitive \(r \)-th root of unity and thus we have \(\mu(\xi^{or}, w^r, \varphi_r) = 1 \). So using Lemma 2.1 in (1) we get
\[
0 = \frac{1}{r} + \frac{-r^{n-1}}{r^n} + \frac{1}{r^n} \sum_{i \equiv \alpha (r)} \xi_{x_i}(u)(-2r^{n-1}) + \frac{1}{r^n} \sum_{i \equiv \alpha (r)} \xi_{x_i}(u)(r^{n-1}(r - 1) - r^{n-1})
\]
\[
= \sum_{i \equiv \alpha (r)} \xi_{x_i}(u) - \frac{2}{r} \sum \xi_{x_i}(u).
\]

So
\[
r \sum_{i \equiv \alpha (r)} \xi_{x_i}(u) = 2 \sum \xi_{x_i}(u).
\]

Now by Lemma 1.5 the right side of this equation is zero and by induction all summands on the left side are equal. Hence varying \(\alpha \) gives \(\xi_{x}(u) = 0 \) for \(\alpha(x) = r^{m} \).

So it only remains to show that \(\xi_{x}(u) = 1 \) for exactly one conjugacy class \(x^{G} \) in \(G \), where \(\alpha(x) = r^{n} \). The arguments in this case are very close to the arguments above. Let \(k \leq n \). As in the computation above we have \(\varphi_{r^k}(u^r) \sim (1, \zeta_{r^1}, \zeta_{r^1}, ..., \zeta_{r^{r^n}}, \zeta_{r^{r^n}}) \) for some primitive \(r^{n-1} \)-th root of unity and \(\varphi_{r^k}(u) \sim (1, a_1, a_1^{-1}, a_2, a_2^{-1}, ..., a_r, a_r^{-1}) \), where \(a_i \) are roots of unity such that \(a_i^{r^{n-k}} \neq 0 \) for \(1 \leq i \leq r^k - 1 \) and \(a_r \) is some primitive \(r^{n-k} \)-th root of unity. Set \(\xi = a_r \) and let \(l = \frac{r^{n-1}}{2} \), if \(r \) is odd, and \(l = \frac{r^{n-2}}{2} \), if \(r \) is even.

Let \(\{x_i \mid 1 \leq i \leq l, gcd(i, r) = 1 \} \) be a set a representatives of conjugacy classes of elements of order \(r^n \) in \(G \) such that \(x_i = x_i^1 \) and \(\varphi_1(x_i) \sim \varphi_1(u) \). Then \(x_i^r \) is rationally conjugate to \(u^r \). We will prove by induction on \(k \) that:

(i) \(\xi_{x_i}(u) = 1 \) and \(\xi_{x_j}(u) = 0 \) for \(i \equiv \pm 1 \ (r^{n-k}), i \neq 1 \).

(ii) \(\xi_{x_i}(u) = \xi_{x_j}(u) \) for \(i \equiv \pm j \ (r^{n-k}) \) and \(i \neq \pm 1 \ (r^{n-k}) \).

We will prove these two facts for \(k = n - 1 \). If \(r = 2 \), then the Proposition will follow from this. If \(r \) is odd, we will prove afterwards that \(\sum_{i \equiv \alpha (r)} \xi_{x_i}(u) = 0 \) for \(\alpha \neq \pm 1 \ (r) \), which then also implies the Proposition.
Let \(\alpha \) be a natural number prime to \(r \) with \(1 \leq \alpha \leq l \). Using the HeLP-method and \(\varepsilon_\pm(u) = 0 \) for \(\varepsilon(x) < r^n \) we obtain, doing the same calculations as in (1):

\[
\mu(\xi^\alpha, u, \varphi_{r^k}) = \frac{1}{r} \mu(\xi^{\alpha r}, u^r, \varphi_{r^k}) + \frac{\text{Tr}(\xi^{-\alpha})}{r^n} + \frac{1}{r^n} \sum_i \varepsilon_{x_i}(u) \text{Tr}((\xi^i + \xi^{-1})\xi^{-\alpha}).
\] (4)

As \(u^r \) is rationally conjugate to \(x_1^r \) we know that \(\xi^{\pm r} \) are eigenvalues of \(\varphi_{r^k}(u^r) \). So we get

\[
\mu(\xi^\alpha, u, \varphi_{r^k}) = \begin{cases}
1, & \alpha \equiv \pm 1 \ (r^{n-k}) \\
0, & \text{else}
\end{cases}
\]

and

\[
\mu(\xi^{\alpha r}, u^r, \varphi_{r^k}) = \begin{cases}
1, & \alpha \equiv \pm 1 \ (r^{n-k-1}) \\
0, & \text{else}
\end{cases}
\]

There are now several cases to consider: (ii) is clear for \(k = 0 \) and if \(\alpha \neq \pm 1 \ (r^{n-k}) \) we can do the same computations as in (2) to obtain (ii), if \(k < n - 1 \). So (ii) holds for \(k = n - 1 \).

To obtain the base case for (i) set \(k = 0 \). Then from (4) we obtain (similar to the computation in (2)):

\[
1 = \frac{1}{r} \varepsilon_{x_1}(u) - \frac{1}{r} \sum_{i \equiv \pm 1 (r^{n-1})} \varepsilon_{x_i}(u)
\]

and

\[
0 = \frac{1}{r} \varepsilon_{x_i}(u) - \frac{1}{r} \sum_{i \equiv \pm 1 (r^{n-1})} \varepsilon_{x_i}(u)
\]

for \(\alpha \equiv \pm 1 \ (r^{n-1}) \) and \(\alpha \neq 1 \). Subtracting two such equations gives

\[
1 = \varepsilon_{x_1}(u) - \varepsilon_{x_i}(u)
\] (5)

for every \(\alpha \equiv \pm 1 \ (r^{n-1}) \) and \(\alpha \neq 1 \). Let \(t = |\{i \in N | i \leq l, i \equiv \pm 1 \ (r^{n-1})\}| \). Then summing up the equations for all \(\alpha \equiv \pm 1 \ (r^{n-1}) \) gives

\[
1 = \frac{t}{r} \sum_{i \equiv \pm 1 (r^{n-1})} \varepsilon_{x_i}(u) - \frac{t}{r} \sum_{i \equiv \pm 1 (r^{n-1})} \varepsilon_{x_i}(u) = \frac{t}{r} \sum_{i \equiv \pm 1 (r^{n-1})} \varepsilon_{x_i}(u) - \frac{t}{r} \sum_{i \equiv \pm 1 (r^{n-1})} \varepsilon_{x_i}(u).
\]

So \(\sum_{i \equiv \pm 1 (r^{n-1})} \varepsilon_{x_i}(u) = 1 \) and the base case of (i) follows from (5).

So assume \(1 \leq k < n - 1 \). Then \(\sum_{i \equiv \pm 1 (r^{n-k})} \varepsilon_{x_i}(u) = 1 \) by induction and for \(\alpha \equiv \pm 1 \ (r^{n-k}) \)
from (4) computing as in (2) we obtain

\[1 = \frac{1}{r} + \sum_{i=\pm 1(r^{n-k})} \varepsilon_{x_1}(u) - \frac{1}{r} \sum_{i=\pm 1(r^{n-k-1})} \varepsilon_{x_1}(u) = \frac{1}{r} + 1 - \frac{1}{r} \sum_{i=\pm 1(r^{n-k-1})} \varepsilon_{x_1}(u). \]

For \(\alpha \neq \pm 1 (r^{n-k}) \) and \(\alpha \equiv \pm 1 (r^{n-k-1}) \) we obtain the same way

\[0 = \frac{1}{r} + \sum_{i=\pm \alpha(r^{n-k})} \varepsilon_{x_1}(u) - \frac{1}{r} \sum_{i=\pm 1(r^{n-k-1})} \varepsilon_{x_1}(u). \]

Thus subtracting the last equation from the one before gives

\[1 = 1 - \sum_{i=\pm \alpha(r^{n-k})} \varepsilon_{x_1}(u). \]

The summands on the right hand side are all equal by (ii), so \(\varepsilon_{x_0}(u) = 0 \), as claimed.

Finally let \(r \) be odd, \(k = n - 1 \) and \(\alpha \neq \pm 1 (r) \). Then \(\mu(\xi^a, u^r, \varphi_{\ast}) = \mu(1, u^r, \varphi_{\ast}) = 3 \).

So from (4) computing as in (3) we obtain

\[0 = \frac{3}{r} - \frac{r^{n-1}}{r^n} - 2 \sum_{i} \varepsilon_{x_1}(u) + \sum_{i=\pm \alpha(r)} \varepsilon_{x_1}(u) = \sum_{i=\pm \alpha(r)} \varepsilon_{x_1}(u). \]

As by (ii) all summands in the last sum are equal, we get \(\varepsilon_{x_0}(u) = 0 \) and the Proposition is finally proved.

Proof of Theorem 2: Let \(G = \text{PSL}(2, p^f) \) such that \(f \leq 2 \) or \(p = 2 \). Assume first that \(r \) is an odd prime, which is not \(p \), and \(R \) is an \(r \)-subgroup of \(V(ZG) \). As every \(r \)-subgroup of \(G \) is cyclic so is \(R \) by [Her08b, Theorem A] and thus \(R \) is rationally conjugate to a subgroup of \(G \) by Proposition 1. If \(p \neq 2 \) and \(R \) is a \(2 \)-subgroup of \(V(ZG) \), then \(R \) is either cyclic or dihedral or a Kleinian four group by [HHK09, Theorem 2.1]. If \(R \) is cyclic, then it is rationally conjugate to a subgroup of \(G \) by Proposition 1. If \(R \) is dihedral or a Kleinian four group let \(S = \langle s \rangle \) be a maximal cyclic subgroup of \(R \). Then \(s \) is rationally conjugate to an element \(g \in G \) by Proposition 1. Moreover \(R \) is isomorphic to some subgroup of \(H \) of \(G \), such that the maximal cyclic subgroup of \(H \) is generated by \(g \). As there is only one conjugacy class of involutions in \(G \) every isomorphism \(\sigma \) between \(R \) and \(H \) mapping \(s \) to \(g \) satisfies \(\chi(\sigma(u)) = \chi(u) \) for every irreducible complex character of \(G \). Thus \(R \) is rationally conjugate to \(H \) by Lemma 1.6.

If \(p = 2 \) and \(P \) is a \(2 \)-subgroup of \(V(ZG) \) then all non-trivial elements of \(P \) are in-
volutions, so P is elementary abelian. As there is again only one conjugacy class of involutions in G every isomorphism σ between P and a subgroup of G isomorphic with P satisfies $\chi(\sigma(u)) = \chi(u)$ for every irreducible complex character of G. So P is rationally conjugate to a subgroup of G by Lemma 1.6. Finally assume that p is odd and P is a p-subgroup of $V(ZG)$. If P is of order p it is rationally conjugate to a subgroup of G by Lemma 1.3. If P is of order p^2, it is elementary abelian. Let c and d be generators of P, then they are rationally conjugate to group elements by Lemma 1.3. But there are only two conjugacy classes of elements of order p and to whichever elements c and d are conjugate, it is possible to pick some, which generate an elementary abelian subgroup of G of order p^2. Then again we obtain an isomorphism σ preserving character values.

Remark: Let $G = \text{PSL}(2, p')$ and let n be a number prime to p. The structure of the Brauer table of G in defining characteristic yields immediately, that if we can prove that a unit $u \in V(ZG)$ of order n is rationally conjugate to an element in G applying the HeLP-method to the Brauer table, then this calculations will hold over any $\text{PSL}(2, q)$, if n and q are coprime. In this sense it would be interesting, and seems actually achievable, to determine a subset $A_{p'}$ of \mathbb{N} such that we can say: The HeLP-method proves that a unit $u \in V(ZG)$ of order n is rationally conjugate to an element in G if and only if $n \in A_{p'}$. Test computations yield the conjecture that $A_{p'}$ actually contains all odd numbers prime to p. If this turned out to be true this would yield, using the results in [Her07], the First Zassenhaus Conjecture for the groups $\text{PSL}(2, p)$, where p is a Fermat- or Mersenne prime.

Other interesting questions concerning torsion units of the integral group ring of $G = \text{PSL}(2, p')$ were mentioned at the end of [HHK09] and are still open today: If the order of $u \in V(ZG)$ is divisible by p, is u of order p? Are units of order p rationally conjugate to elements of G? Are there non-abelian p-subgroups in $V(ZG)$?

Acknowledgement: The computations given above were all done by hand, but some motivating computations were done using a GAP-implementation of the HeLP-algorithm written by Andreas Bädle.

References

ular representations as an introduction to the local representation theory of finite groups.

[Her08b] ———, *Unit groups of integral finite group rings with no noncyclic abelian finite p-subgroups*, Comm. Algebra 36 (2008), no. 9, 3224–3229.

Leo Margolis, Fachbereich Mathematik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany. leo.margolis@mathematik.uni-stuttgart.de
Leo Margolis
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: margollo@mathematik.uni-stuttgart.de
WWW: http://www.igt.uni-stuttgart.de/LstDiffgeo/Margolis/
2014-017 Margolis, L.: A Sylow theorem for the integral group ring of $PSL(2, q)$

2014-010 Kööster, I.: Finite Groups with Sylow numbers $\{q^n, a, b\}$

2014-009 Kahnert, D.: Hausdorff Dimension of Rings

2014-008 Steinwart, I.: Measuring the Capacity of Sets of Functions in the Analysis of ERM

2014-007 Steinwart, I.: Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties

2014-004 Markhasin, L.: L_2- and $S^\omega_{p,q}B$-discrepancy of (order 2) digital nets

2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating mixed smoothness

2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs

2014-001 Giesselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity

2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering

2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related Methods

2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension

2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres

2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive Equations

2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau’s Algorithm on Manifolds

2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups

2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras

2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
2013-005 **Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.**: A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure

2013-004 **Griesemer, M.; Wellig, D.**: The Strong-Coupling Polaron in Electromagnetic Fields

2013-003 **Kabil, B.; Rohde, C.**: The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces

2013-002 **Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.**: Strong universal consistent estimate of the minimum mean squared error

2013-001 **Kohls, K.; Rösch, A.; Siebert, K.G.**: A Posteriori Error Analysis of Optimal Control Problems with Control Constraints

2012-018 **Kimmerle, W.; Konovalov, A.**: On the Prime Graph of the Unit Group of Integral Group Rings of Finite Groups II

2012-017 **Stroppel, B.; Stroppel, M.**: Desargues, Doily, Dualities, and Exceptional Isomorphisms

2012-016 **Moroianu, A.; Pilca, M.; Semmelmann, U.**: Homogeneous almost quaternion-Hermitian manifolds

2012-015 **Steinke, G.F.; Stroppel, M.J.**: Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane

2012-014 **Steinke, G.F.; Stroppel, M.J.**: Finite elation Laguerre planes admitting a two-transitive group on their set of generators

2012-013 **Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.**: Polar actions on complex hyperbolic spaces

2012-012 **Moroianu, A.; Semmelmann, U.**: Weakly complex homogeneous spaces

2012-011 **Moroianu, A.; Semmelmann, U.**: Invariant four-forms and symmetric pairs

2012-010 **Hamilton, M.J.D.**: The closure of the symplectic cone of elliptic surfaces

2012-009 **Hamilton, M.J.D.**: Iterated fibre sums of algebraic Lefschetz fibrations

2012-008 **Hamilton, M.J.D.**: The minimal genus problem for elliptic surfaces

2012-007 **Ferrario, P.**: Partitioning estimation of local variance based on nearest neighbors under censoring

2012-006 **Stroppel, M.**: Buttons, Holes and Loops of String: Lacing the Doily

2012-005 **Hantsch, F.**: Existence of Minimizers in Restricted Hartree-Fock Theory

2012-004 **Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.**: Unitalts admitting all translations

2012-003 **Hamilton, M.J.D.**: Representing homology classes by symplectic surfaces

2012-002 **Hamilton, M.J.D.**: On certain exotic 4-manifolds of Akhmedov and Park

2012-001 **Jentsch, T.**: Parallel submanifolds of the real 2-Grassmannian

2011-028 **Spreer, J.**: Combinatorial 3-manifolds with cyclic automorphism group

2011-026 **Müller, S.**: Bootstrapping for Bandwidth Selection in Functional Data Regression

2011-025 **Felber, T.; Jones, D.; Kohler, M.; Walk, H.**: Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates

2011-024 **Jones, D.; Kohler, M.; Walk, H.**: Weakly universally consistent forecasting of stationary and ergodic time series

2011-023 **Györfi, L.; Walk, H.**: Strongly consistent nonparametric tests of conditional independence
2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors

2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks

2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions

2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function

2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two

2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy

2011-008 Stroppel, M.: Orthogonal polar spaces and unitals

2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra

2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces

2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I

2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_2-structures

2010-018 Kimmervle, W.; Konovalov, A.: On integral-like units of modular group rings

2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces

2010-016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds

2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $SO(3)$

2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond

2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries

2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds

2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function

2010-008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes

2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems

2010-004 Künnel, W.; Solanes, G.: Tight surfaces with boundary

2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data

2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras

2010-001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one

2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems

2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups

2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation

2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces

2009-001 Brehm, U.; Künnel, W.: Lattice triangulations of E^3 and of the 3-torus

2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps

2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities

2008-003 Effenberger, F.; Künnel, W.: Hamiltonian submanifolds of regular polytope

2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $PSL(2, q)$

2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term

2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant magnetic field

2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions