Strongly consistent detection for nonparametric hypotheses

László Györfi, Harro Walk
Strongly consistent detection for nonparametric hypotheses

László Györfi and Harro Walk

Consider two robust detection problems formulated by nonparametric hypotheses such that both pairs hypotheses are composite and indistinguishable. Strongly consistent testing rules are shown.

1 Composite hypotheses defined by half spaces of distributions

Let v_0, v_1 be fixed distributions on \mathbb{R}^d which are the nominal distributions under two hypotheses. Let

$$V(v, \mu) = \sup_{A \subseteq \mathbb{R}^d} |v(A) - \mu(A)|$$

denote the total variation distance between two distributions v and μ, where the supremum is taken over all Borel sets of \mathbb{R}^d.

Let X, X_1, X_2, \ldots be i.i.d. random vectors according to a common distribution μ. We observe X_1, \ldots, X_n. Under the hypothesis H_j ($j = 0, 1$) the distribution μ is a distorted version of v_j. Formally define the two hypotheses by

$$H_0 = \{ \mu : V(\mu, v_0) < V(\mu, v_1) \},$$

and

$$H_1 = \{ \mu : V(\mu, v_1) < V(\mu, v_0) \}.$$
Our aim is to construct a distribution-free strong consistent test, which makes error only finitely many times almost surely (a.s.). The concept of strong consistent test is quite unusual, it means that both on H_0 and on H_1 the test makes a.s. no error after a random sample size. In other words, denoting by P_0 and P_1 the probability under the hypotheses H_0 and H_1, we have

$$P_0\{\text{rejecting } H_0 \text{ for only finitely many } n \} = 1$$

and

$$P_1\{\text{rejecting } H_1 \text{ for only finitely many } n \} = 1.$$

In a real life problem, for example, when we get the data sequentially, one gets data just once, and should make good inference for these data. Strong consistency means that the single sequence of inference is a.s. perfect if the sample size is large enough. This concept is close to the definition of discernability introduced by Dembo and Peres [4]. For a discussion and references, we refer the reader to Biau and Györfi [5], Devroye and Lugosi [8], Gretton and Györfi [10] and Györfi and Walk [15].

Motivated by a related goodness of fit test statistic of Györfi and van der Meulen [14], put

$$L_{n,0} = \sum_{j=1}^{m_n} |\mu_n(A_{n,j}) - \nu_0(A_{n,j})|,$$

and

$$L_{n,1} = \sum_{j=1}^{m_n} |\mu_n(A_{n,j}) - \nu_1(A_{n,j})|,$$

where μ_n denotes the empirical measures associated with the sample X_1, \ldots, X_n, so that

$$\mu_n(A) = \frac{\# \{ i : X_i \in A, i = 1, \ldots, n \}}{n}$$

for any Borel subset A, and $\mathcal{P}_n = \{A_{n,1}, \ldots, A_{n,m_n}\}$ is a finite partition of \mathbb{R}^d.

Introduce the test such that accept the hypothesis H_0 if

$$L_{n,0} < L_{n,1},$$

and reject otherwise.

The sequence of partitions $\mathcal{P}_1, \mathcal{P}_2, \ldots$ is called asymptotically fine if for any sphere S centered at the origin

$$\lim_{n \to \infty} \max_{A \in \mathcal{P}_n, A \cap S \neq \emptyset} \text{diam}(A) = 0. \tag{4}$$

Theorem 1. Assume that the sequence of partitions $\mathcal{P}_1, \mathcal{P}_2, \ldots$ is asymptotically fine and

$$\lim_{n \to \infty} \frac{m_n}{n} = 0. \tag{5}$$

Then the test (3) is strongly consistent.
Proof. Assume H_0 without loss of generality. Then the error event means that

$$L_{n,0} \geq L_{n,1}.$$

Thus,

$$0 \leq \sum_{j=1}^{m_n} |\mu_n(A_{n,j}) - \nu_0(A_{n,j})| - \sum_{j=1}^{m_n} |\mu_n(A_{n,j}) - \nu_1(A_{n,j})|$$

$$\leq 2L_n + \sum_{j=1}^{m_n} |\mu(A_{n,j}) - \nu_0(A_{n,j})| - \sum_{j=1}^{m_n} |\mu(A_{n,j}) - \nu_1(A_{n,j})|,$$

where

$$L_n = \sum_{j=1}^{m_n} |\mu_n(A_{n,j}) - \mu(A_{n,j})|.$$

Introduce the notation

$$\varepsilon = -(V(\mu, \nu_0) - V(\mu, \nu_1)) > 0.$$

The sequence of partitions $\mathcal{P}_1, \mathcal{P}_2, \ldots$ is asymptotically fine, which implies that

$$\lim_{n \to \infty} \left(\sum_{j=1}^{m_n} |\mu(A_{n,j}) - \nu_0(A_{n,j})| - \sum_{j=1}^{m_n} |\mu(A_{n,j}) - \nu_1(A_{n,j})| \right)$$

$$= 2(V(\mu, \nu_0) - V(\mu, \nu_1))$$

$$= -2\varepsilon,$$

(cf. Biau and Györfi [5]). Thus, for all n large enough,

$$P_{e,n} = \mathbb{P}\{\text{error} \} \leq \mathbb{P}\{0 \leq 2L_n - \varepsilon\}.$$

Beirlant, Devroye, Györfi and Vajda [2] and Biau and Györfi [5] proved that, for any $\delta > 0$,

$$\mathbb{P}\{L_n > \delta\} \leq 2^{m_n} e^{-n\delta^2/2}.$$

Therefore

$$P_{e,n} \leq 2^{m_n} e^{-n\delta^2/2}.$$

Because of (5),

$$\sum_{n=1}^{\infty} P_{e,n} < \infty,$$

and so the Borel-Cantelli lemma implies that a.s.

$$L_{n,0} - L_{n,1} < 0$$

for all n large enough, i.e., the error
occurs a.s. for only finitely many \(n \). Thus, the strong consistency is proved. \(\Box \)

In a straightforward way, the proof of Theorem 1 can be extended to infinite partitions if we assume that for each sphere \(S \) centered at the origin

\[
\lim_{n \to \infty} \left| \frac{\{j : A_{n,j} \cap S \neq \emptyset\}}{n} \right| = 0.
\]

Next, a variant of the test (3) with much smaller computational complexity will be defined. The test statistic is based on recursive histogram. In this section assume that the partitions are infinite and all cells of the partitions have finite and positive Lebesgue measure \(\lambda \). Let \(A_n(x) \) denote the cell of \(\mathcal{P}_n \) into which \(x \) belongs. The density estimate

\[
f_n(x) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{X_i \in A_i(x)} \lambda(A_i(x))^{-1}
\]

is called recursive histogram.

For \(A \in \mathcal{P}_n \), introduce the estimate

\[
\mu_n^*(A) := \int_A f_n(x) dx.
\]

Notice that \(\mu_n^*(A) \) can be calculated in a recursive way, which is important in on-line applications. These definitions imply that

\[
\mu_n^*(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{X_i \in A_i(x)} \lambda(A_i(x))^{-1} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{X_i \in A_i(x)} \lambda(A_i(x))^{-1} = \frac{1}{n} \sum_{i=1}^{n} \frac{\lambda(A \cap A_i(X_i))}{\lambda(A_i(X_i))}.
\]

If the sequence of partitions \(\mathcal{P}_1, \mathcal{P}_2, \ldots \) is nested, i.e., the sequence of \(\sigma \)-algebras \(\sigma(\mathcal{P}_n) \) is non-decreasing, then for \(A \in \mathcal{P}_n \) let the ancestor \(B_A^{(i)} \in \mathcal{P}_i \) be such that \(A \subset B_A^{(i)} \) for \(i \leq n \). One can check that for nested partitions the estimate has the following form:

\[
\mu_n^*(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{X_i \in B_A^{(i)}} \lambda(B_A^{(i)}) \lambda(A_i(X_i))^{-1}.
\]

Put

\[
L_{n,j}^* := \sum_{A \in \mathcal{P}_n} |\mu_n^*(A) - v_j(A)|
\]

\((j = 0, 1)\). Introduce the test such that accept the hypothesis \(H_0 \) if

\[
L_{n,0}^* < L_{n,1}^*,
\]

and reject otherwise.
Theorem 2. Assume that the sequence of partitions $\mathcal{P}_1, \mathcal{P}_2, \ldots$ is asymptotically fine such that
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} \inf_{j} \lambda(A_{n,j}) < \infty.
\] (7)

Further suppose that μ has a density. Then the test (6) is strongly consistent.

Proof. Assume H_0 without loss of generality. One notices
\[
L_n^0 - L_n^1 \leq 2L_n^* + Q_n^*,
\]
where
\[
L_n^* = \sum_{A \in \mathcal{P}_n} |\mu_n^*(A) - \mu(A)|,
\]
and
\[
Q_n^* = \sum_{A \in \mathcal{P}_n} |\mu(A) - v_0(A)| - \sum_{A \in \mathcal{P}_n} |\mu(A) - v_1(A)|.
\]

By Biau and Győrfi [5],
\[
Q_n^* \to 2(V(\mu, v_0) - V(\mu, v_1)) < 0,
\]
the latter because of H_0. Next $L_n^* \to 0$ a.s. will be shown. Denote the density of μ by f. Thus
\[
L_n^* = \sum_{A \in \mathcal{P}_n} \left| \int f_n(x) dx - \int f(x) dx \right| \leq \int |f_n(x) - f(x)| dx.
\]

Therefore we have to prove the strong L_1-consistency of the recursive histogram. Consider the bias part. Introduce the ordinary histogram:
\[
\tilde{f}_n(x) := \frac{1}{n} \sum_{i=1}^{n} 1_{X_i \in A_{n}(x)} \lambda(A_{n}(x)).
\]
and put
\[
f_n(x) := \mathbb{E}\{\tilde{f}_n(x)\} = \frac{\mu(A_{n}(x))}{\lambda(A_{n}(x))}.
\]

According to the Abou-Jaoude theorem, if the sequence of partitions $\mathcal{P}_1, \mathcal{P}_2, \ldots$ is asymptotically fine, then
\[
\int |\tilde{f}_n - f| \to 0
\]
(cf. Devroye and Győrfi [6]). Thus, for the bias term of the recursive histogram, we get
\[
\int \|\mathbb{E}\{f_n\} - f\| = \int \left| \frac{1}{n} \sum_{i=1}^{n} \tilde{f}_i - f \right| \leq \frac{1}{n} \sum_{i=1}^{n} \int |\tilde{f}_i - f| \to 0.
\] (8)
For the variation term of the recursive histogram, we apply the generalized theorem of Kolmogorov: Let $U_n, n = 1, 2, \ldots$ be an L_2-valued sequence of independent, zero mean random variables such that

$$\sum_{n=1}^{\infty} \mathbb{E}\left\{ \frac{\|U_n\|^2}{n^2} \right\} < \infty$$

where $\| \cdot \|_2$ denotes the L_2 norm. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} U_i = 0$$
a.s. (cf. Győrfi et al. [11]). For

$$U_n := \mathbb{E}\left\{ \frac{\mathbb{I}(X_n \in A_n(\cdot))}{\lambda(A_n(\cdot))} \right\} - \mathbb{E}\left\{ \frac{\mathbb{I}(X_n \in A_n(\cdot))}{\lambda(A_n(\cdot))} \right\}^2,$$

one has to verify the condition of the generalized Kolmogorov theorem:

$$\sum_{n=1}^{\infty} \mathbb{E}\left\{ \left\| \mathbb{I}(X_n \in A_n(\cdot)) \lambda(A_n(\cdot)) \right\|_2^2 \right\} \leq \sum_{n=1}^{\infty} \mathbb{E}\left\{ \left\| \mathbb{I}(X_n \in A_n(\cdot)) \lambda(A_n(\cdot)) \right\|_2^2 \right\}$$

by the condition of the theorem, and so

$$\int \left| f_n - \mathbb{E}\{f_n\} \right|^2 \to 0. \quad (9)$$
a.s. From Lemma 3.1 in Győrfi and Masry [13] we get that the limit relations (8) and (9) imply

$$\int |f_n - f| \to 0$$
a.s. Therefore a.s.

$$L_{n,0}^* - L_{n,1}^* < 0$$
for all n large enough, and so the the strong consistency is proved. □

2 Composite hypotheses defined by half spheres of distributions

Again, under the hypothesis H'_j ($j = 0, 1$) the distribution μ is a distorted version of ν_j. In this section we assume that the true distribution lies within a certain total variation distance of the underlying nominal distribution.

We formally define the two hypotheses by

$$H'_j = \{ \mu : V(\mu, \nu_j) < \Delta \}, \quad j = 0, 1,$$

where

$$\Delta := (1/2)V(\nu_0, \nu_1).$$

Because of

$$H'_j \subset H_j, \quad j = 0, 1,$$

the test (3) in the previous section is strongly consistent. In this section we introduce a simpler test. For the notations

$$f = \frac{d\nu}{d(\nu + \mu)} \quad \text{and} \quad g = \frac{d\mu}{d(\nu + \mu)},$$

the general version of Scheffé’s theorem implies that

$$V(\nu, \mu) = V(A^*) - \mu(A^*),$$

where

$$A^* = \{ x : f(x) > g(x) \}.$$

Introduce the notation

$$A_{0,1} = \{ x : f_0(x) > f_1(x) \} = \{ x : f_0(x) > 1/2 \},$$

where

$$f_0 = \frac{d\nu_0}{d(\nu_0 + \nu_1)} \quad \text{and} \quad f_1 = \frac{d\nu_1}{d(\nu_0 + \nu_1)}.$$

The proposed test is the following: accept hypothesis H'_0 if

$$\mu_n(A_{0,1}) \geq \frac{\nu_0(A_{0,1}) + \nu_1(A_{0,1})}{2},$$

and reject otherwise.

Then, we get that

Theorem 3. The test (11) is strongly consistent.

Proof. Assume H_0 without loss of generality. Put
\[\varepsilon = \Delta - V(\mu_0, v_0) > 0. \]

Observe that by the Scheffé theorem [22],

\[
v_0(A_{0,1}) - \mu(A_{0,1}) \leq V(v_0, \mu) = \Delta - \varepsilon = \frac{1}{2} V(v_0, v_1) - \varepsilon = \frac{1}{2} (v_0(A_{0,1}) - v_1(A_{0,1})) - \varepsilon.
\]

Rearranging the obtained inequality, we get that

\[
\mu(A_{0,1}) \geq \frac{v_0(A_{0,1}) + v_1(A_{0,1})}{2} + \varepsilon. \tag{12}
\]

Therefore, (12) and Hoeffding’s inequality [16] imply that

\[
\mathbb{P}\{ \text{error} \} = \mathbb{P}\left\{ \mu_n(A_{0,1}) < \frac{v_0(A_{0,1}) + v_1(A_{0,1})}{2} \right\}
\leq \mathbb{P}\{ \mu(A_{0,1}) - \mu_n(A_{0,1}) > \varepsilon \}
\leq e^{-2n\varepsilon^2}.
\]

Therefore the Borel-Cantelli lemma implies the strong consistency. \(\square\)

3 Discussion

INDISTINGUISHABILITY.
For the hypotheses \(H_0\) and \(H_1\) there is no positive margin, because the gap between \(H_0\) and \(H_1\) is just the hyperplane

\[\{ \mu : V(\mu, v_0) = V(\mu, v_1) \}. \]

Moreover, the margin is zero:

\[\inf_{\mu \in H_0, v \in H_1} V(\mu, v) = 0. \]

Without any positive margin condition it is impossible the derive uniform bound on the error probabilities. The pair \((H_0, H_1)\) of hypotheses is called distinguishable if there is a sequence of uniformly consistent tests, which means that the errors of the first and second kind tend to zero uniformly. For a test \(T_n\) with sample size \(n\), let \(\alpha_n,\mu(T_n)\) and \(\beta_n,\mu(T_n)\) denote the errors of the first and second kind, resp. Put
Strongly consistent detection for nonparametric hypotheses

\[\alpha_n(T_n, H_0) = \sup_{\mu \in H_0} \alpha_{n, \mu}(T_n) \quad \beta_n(T_n, H_1) = \sup_{\mu \in H_1} \beta_{n, \mu}(T_n). \]

A sequence of tests \(T_n, n = 1, 2, \ldots \) is called uniformly consistent if

\[\lim_{n \to \infty} (\alpha_n(T_n, H_0) + \beta_n(T_n, H_1)) = 0. \]

It is known that a necessary condition of the distinguishable property is that for any distribution \(m \max \{ \inf_{n \in H_0} V(m, n), \inf_{n \in H_1} V(m, n) \} > 0 \). (See Barron [1], Ermakov [9], Hoeffding and Wolfowitz [17], Kraft [18], LeCam [19], LeCam and Schwartz [20], Schwartz [23].) Obviously, this necessary condition is not satisfied when \(m = (n_1 + n_2)/2 \). Because of

\[\max \left\{ \inf_{v \in H_0^*} V(\mu^*, v), \inf_{v \in H_1^*} V(\mu^*, v) \right\} = 0, \]

the pair \((H_0^*, H_1^*) \) of hypotheses is indistinguishable, too.

COMPUTATION.
The hypothesis testing method (11) proposed above is computationally quite simple. The set \(A_{0,1} \) and the nominal probabilities \(n_0(A_{0,1}) \) and \(n_1(A_{0,1}) \) may be computed and stored before seeing the data. Then one merely needs to calculate \(m_n(A_{0,1}) \).

HYPOTHESES FORMULATED BY DENSITIES.
Devroye, Györfi, Lugosi [7] formulated a special case of hypotheses \((H_0', H_1') \), when \(\mu, v_0 \) and \(v_1 \) have densities \(f, f_0 \) and \(f_1 \). Under some mild margin condition they proved uniform exponential bounds for the probability of failure for \(k \geq 2 \) hypotheses. Moreover, they illustrated the robustness for additive noise scheme, and showed examples, where the test (11) is consistent and the maximum likelihood test does not work. Formally, the maximum likelihood test \(T_n \) is defined by

\[T_n = \begin{cases} 0 & \text{if } \sum_{i=1}^{n}(\log f_0(X_i) - \log f_1(X_i)) > 0 \\ 1 & \text{otherwise.} \end{cases} \]

For \(f \in H_0' \), the strong law of large numbers implies the strong consistency of the maximum likelihood test if both integrals \(\int f \log f_0 \) and \(\int f \log f_1 \) are well defined, and

\[\int f \log f_0 > \int f \log f_1. \]

ROBUSTNESS.
Note that Theorem 3 does not require any assumption for the nominal distributions. The test is robust in a very strong sense: we obtain consistency under the sole assumption that the distorted distribution remains within a certain total variation distance of the nominal distribution. For example, if \(\mu \) is either \((1 - \delta)v_0 + \delta \tau, \) or
$(1 - \delta)v_1 + \delta \tau$ with arbitrary "strange" distribution τ such that $\delta < \Delta$, then we have (10):

$$V(\mu, v_0) = V((1 - \delta)v_0 + \delta \tau, v_0)$$

$$= V(\delta \tau, \delta v_0)$$

$$\leq \delta$$

$$< \Delta.$$

τ can be the outliers' distribution, it is really arbitrary, for example, not having expectations, or can be even a discrete distribution. The probability of outlier δ can be at most equal to Δ. The outliers can be formulated such that we are given three, independent i.i.d. sequences $\{U_i\}, \{V_i\}, \{I_i\}$, where $\{U_i\}$, $\{V_i\}$ are \mathbb{R}^d-valued, and $\{I_i\}$ are binary. Put

$$X_n = (1 - I_n)U_n + I_n V_n.$$

If U_n is v_0 distributed, V_n is τ distributed, $\mathbb{P}\{I_n = 1\} = \delta$, then we get the previous scheme. Other application can be the case of censored observations, when V_n is a distortion of U_n such that some components of the vector U_n are censored. In this scheme δ is the probability of censoring. Notice that in order to estimate the distribution from censored observations one needs samples $\{(X_i, I_i)\}_{i=1}^n$ (cf. Győrfi et al. [12]), while for detection it is enough to have $\{X_i\}_{i=1}^n$.

OPEN PROBLEMS.

1. Characterize the distributions $\mu \in H_0 \setminus H_0'$, where the simple test (11) is strongly consistent. As in the proof of Theorem 3 the strong consistency can be verified if

$$\mu(A_{0,1}) > \frac{v_0(A_{0,1}) + v_1(A_{0,1})}{2}.$$

We are interested in non-consistent examples, too.

2. Maybe one can improve the test (3), since in the construction of the partitions we don’t take into account the properties of v_0 and v_1. For example, we can include somehow the set $A_{0,1}$.

SEQUENTIAL TESTS.

We dealt with sequences of nonparametric tests with increasing sample size n, where almost surely type I and II errors occur only for finitely many n. One has to distinguish them from nonparametric sequential tests with power one (cf. Darling and Robbins [3], Section 6 in Robbins [21], Section 9.2 in Sen [24]). Such tests almost surely terminate at a random sample size with rejection of a null hypothesis H_0 after finitely many observations, if the alternative hypothesis is valid, and with positive probability do not terminate if H_0 is valid (open-ended procedures). In the latter case an upper bound of the complementary probabilities is an upper bound for the type I error probability.
References

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Kohler, M.; Krzyżak, A.; Walk, H.</td>
<td>Nonparametric recursive quantile estimation</td>
</tr>
<tr>
<td>2014</td>
<td>Kohler, M.; Krzyżak, A.; Tent, R.; Walk, H.</td>
<td>Nonparametric quantile estimation using importance sampling</td>
</tr>
<tr>
<td>2014</td>
<td>Györfi, L.; Walk, H.</td>
<td>Strongly consistent detection for nonparametric hypotheses</td>
</tr>
<tr>
<td>2014</td>
<td>Körner, I.</td>
<td>Finite Groups with Sylow numbers ({ q^a, a, b })</td>
</tr>
<tr>
<td>2014</td>
<td>Kahnert, D.</td>
<td>Hausdorff Dimension of Rings</td>
</tr>
<tr>
<td>2014</td>
<td>Steinwart, I.</td>
<td>Measuring the Capacity of Sets of Functions in the Analysis of ERM</td>
</tr>
<tr>
<td>2014</td>
<td>Steinwart, I.</td>
<td>Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties</td>
</tr>
<tr>
<td>2014</td>
<td>Steinwart, I.; Pasin, C.; Williamson, R.; Zhang, S.</td>
<td>Elicitation and Identification of Properties</td>
</tr>
<tr>
<td>2014</td>
<td>Schmid, J.; Griesemer, M.</td>
<td>Integration of Non-Autonomous Linear Evolution Equations</td>
</tr>
<tr>
<td>2014</td>
<td>Markhasin, L.</td>
<td>(L_2)- and (S_{p,q}^r)B-discrepancy of (order 2) digital nets</td>
</tr>
<tr>
<td>2014</td>
<td>Markhasin, L.</td>
<td>Discrepancy and integration in function spaces with dominating mixed smoothness</td>
</tr>
<tr>
<td>2014</td>
<td>Eberts, M.; Steinwart, I.</td>
<td>Optimal Learning Rates for Localized SVMs</td>
</tr>
<tr>
<td>2014</td>
<td>Giesselmann, J.</td>
<td>A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity</td>
</tr>
<tr>
<td>2013</td>
<td>Steinwart, I.</td>
<td>Fully Adaptive Density-Based Clustering</td>
</tr>
<tr>
<td>2013</td>
<td>Steinwart, I.</td>
<td>Some Remarks on the Statistical Analysis of SVMs and Related Methods</td>
</tr>
<tr>
<td>2013</td>
<td>Rohde, C.; Zeiler, C.</td>
<td>A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension</td>
</tr>
<tr>
<td>2013</td>
<td>Moroianu, A.; Semmelmann, U.</td>
<td>Generalized Killing spinors on Einstein manifolds</td>
</tr>
<tr>
<td>2013</td>
<td>Moroianu, A.; Semmelmann, U.</td>
<td>Generalized Killing Spinors on Spheres</td>
</tr>
<tr>
<td>2013</td>
<td>Corli, A.; Rohde, C.; Schleper, V.</td>
<td>Parabolic Approximations of Diffusive-Dispersive Equations</td>
</tr>
<tr>
<td>2013</td>
<td>Nava-Yazdani, E.; Polthier, K.</td>
<td>De Casteljau's Algorithm on Manifolds</td>
</tr>
<tr>
<td>2013</td>
<td>Bächle, A.; Margolis, L.</td>
<td>Rational conjugacy of torsion units in integral group rings of non-solvable groups</td>
</tr>
<tr>
<td>2013</td>
<td>Knarr, N.; Stroppel, M.J.</td>
<td>Heisenberg groups over composition algebras</td>
</tr>
<tr>
<td>2013</td>
<td>Knarr, N.; Stroppel, M.J.</td>
<td>Heisenberg groups, semifields, and translation planes</td>
</tr>
<tr>
<td>2013</td>
<td>Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.</td>
<td>A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure</td>
</tr>
<tr>
<td>2013</td>
<td>Griesemer, M.; Wellig, D.</td>
<td>The Strong-Coupling Polaron in Electromagnetic Fields</td>
</tr>
<tr>
<td>2013</td>
<td>Kabil, B.; Rohde, C.</td>
<td>The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces</td>
</tr>
</tbody>
</table>

2012-018 Kimmerle, W.; Konovalov, A.: On the Prime Graph of the Unit Group of Integral Group Rings of Finite Groups II

2012-017 Stroppel, B.; Stroppel, M.: Desargues, Doily, Dualities, and Exceptional Isomorphisms

2012-015 Steinke, G.F.; Stroppel, M.J.: Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane

2012-014 Steinke, G.F.; Stroppel, M.J.: Finite elation Laguerre planes admitting a two-transitive group on their set of generators

2012-012 Moroianu, A.; Semmelmann, U.: Weakly complex homogeneous spaces

2012-011 Moroianu, A.; Semmelmann, U.: Invariant four-forms and symmetric pairs

2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces

2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations

2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces

2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring

2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily

2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory

2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations

2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces

2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park

2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group

2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression

2011-023 Győrfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence

2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors

2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks

2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions

2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function

2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two

2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy

2011-008 Stroppel, M.: Orthogonal polar spaces and unitals

2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra

2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces

2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I

2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_2-structures

2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings

2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces

2010-016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds

2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $SO(3)$

2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond

2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries

2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds

2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function

2010-008 Poppitz, S.; Stroppel, M.: Polaries of Schellhammer Planes
2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010-001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^3 and of the 3-torus
2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $PSL(2, q)$
2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
2007-003 Lesky, R.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions