Hausdorff Dimension of Rings

Dietmar Kahnert

Preprint 2014/009
HAUSDORFF DIMENSION OF RINGS

Dietmar Kahnert

Dedicated to Professor Dr. Bodo Volkmann on his 85. birthday

Abstract

In context with the problem of Volkmann whether a subfield K of \mathbb{R} exists with Hausdorff dimension $\dim K \in (0, 1)$, Falconer has proven that there is no subring S with $1/2 < \dim S < 1$ which is an analytic set. We prove that $S = \mathbb{R}$ for every such subring S with $\dim S > 0$.

1 A problem of Volkmann

A function $h : [0, \infty) \to [0, \infty]$ is called Hausdorff function if the following is valid: $h(0) = 0$, $h(t) > 0$ if $t > 0$, $h(a) \leq h(b)$ if $a \leq b$ and $\lim_{t \to 0} h(t) = 0$.

Let H be the set of all Hausdorff functions. For each $h \in H$ and every subset A of \mathbb{R}^n is the outer measure

$$L_h(A) = \lim_{q \to 0} \inf \left\{ \sum_{i=1}^{\infty} h(d(A_i)) : A = \bigcup_{i=1}^{\infty} A_i, d(A_i) \leq q \text{ for all } i \in \mathbb{N} \right\}$$

defined. Let $d(A_i)$ be the diameter of A_i. Souslin sets (also called “analytic sets”), especially Borel sets, are L_h-measurable. If $h(t) = t^\alpha$ ($\alpha > 0$), $L_\alpha = L_h$ is the α-dimensional Hausdorff measure and

$$\dim A = \sup\{\alpha : L_\alpha(A) > 0\}$$

the Hausdorff dimension of A.

The field problem of Volkmann [18]

Is there a subfield K of the field \mathbb{R} of real numbers with $0 < \dim K < 1$?

The problem still remains open.

Result of Falconer ([5] and [7])

No Souslin subring S of \mathbb{R} exists with $1/2 < \dim S < 1$.

The result of Falconer emerges from his theorems regarding the projections of subsets E of \mathbb{R}^2 onto \mathbb{R} and over distance sets $D(E) = \{ |x - y| : x, y \in E \}$. They were won with the help of Fourier transformations. The following generalization should be treated here (Theorem 2):

For each Souslin subring S of \mathbb{R} with $\dim S > 0$ is $S = \mathbb{R}$.
2 Special subfields of \mathbb{R}

2.1 Small subfields

An uncountable F_σ-subfield K of \mathbb{R} with $L_1(A) = 0$ is constructed in a paper of Souslin [17]. In measure-theoretical view one can win small subfields K of \mathbb{R} with help of the metric dimension of Wegmann [19]. Wegmann defines for subsets A of \mathbb{R}^n and $q > 0$

$$N(A, q) = \min \{ k : \text{There are sets } A_1, \ldots, A_k \text{ such that } \bigcup_{i=1}^k A_i = A; d(A_i) \leq q \text{ if } 1 \leq i \leq k \}$$

and

$$m\text{-dim } A = \sup \{ s : \text{If } \bigcup_{i=1}^\infty A_i = A, \text{ then exists } i \in \mathbb{N} \text{ with } \limsup_{q \to 0} N(A_i, q)^s > 0 \}.$$

In the book of Mattila [14] $m\text{-dim} = \dim_p$ is called upper packing dimension. Clearly $\dim \leq m\text{-dim}$.

If A is a subset of \mathbb{R} and $K(A)$ the smallest subfield of \mathbb{R} containing A:

$m\text{-dim } A = 0 \to m\text{-dim } K(A) = 0$ (Kahneret [9]).

With the method used in [9] we can prove: If $g, h \in H$ and $\lim_{q \to 0} h(t)/g(t)^n = 0$ for all $n \in \mathbb{N}$, then $\lim_{q \to 0} N(A, q)g(q) = 0 \to L_h(K(A)) = 0$ for every compact subset A of \mathbb{R}.

An uncountable subset A of \mathbb{R} is called Lusin set, if every uncountable subset of A is of second category. For Lusin sets A is $L_h(A) = 0$ for each $h \in H$.

With the help of the continuum hypothesis it is possible to get subfields of \mathbb{R} which are Lusin sets (Erdős [4]).

2.2 Big subfields

According to an idea of Zygmund, in the paper of Souslin [17], the existence of a non-L_1-measureable subfield K of $\mathbb{R}(L_1(K) > 0, \dim K = 1)$ can be proven with the help of the axiom of choice.

An uncountable subset A of \mathbb{R} is called Sierpinski set (dual to Lusin set), if every uncountable subset of A is of positive outer L_1-measure. With the help of the continuum hypothesis Erdős and Volkmann [3] proved the existence of fields which are Sierpinski sets.

In the latter mentioned paper Erdős und Volkmann constructed for each $\alpha \in (0, 1)$ additive F_σ-subgroups $G(\alpha)$ of \mathbb{R} with $\dim G(\alpha) = \alpha (= m\text{-dim } G(\alpha))$. This result led to the supposition that a corresponding statement could be true for subfields of \mathbb{R}.

3 Subfields K of the complex numbers \mathbb{C} of finite degree

A field E containing a field F can be regarded as an F-vector space. We write $E : F$ for the dimension. We refer in the following to the book of Hornfeck [8].

3.1 \mathbb{C} is normal over K if $\mathbb{C} : K < \infty$

Let $G(\mathbb{C} : K)$ be the group of automorphism φ of \mathbb{C} with $\varphi(x) = x$ for all $x \in K$. The field \mathbb{C} is called normal over K if K is the fixed field of $G(\mathbb{C} : K)$ (other authors name in this case \mathbb{C}
Galois over K). There is $\alpha \in C$ with $C = K(\alpha)$ (Theorem 3a, 61.2). The minimal polynomial $f(x) \in K[x]$ of α splits in $C[x]$:

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n), \quad (\alpha_1 = \alpha).$$

Therefore is $K(\alpha_1, \alpha_2, \ldots, \alpha_n) = K(\alpha) = C$ a splitting field of $f(x)$ (Lemma in 58.1). C is normal over K (Theorem 7, 65.2) and $|G(C : K)| = C : K$.

The field C has two continuous automorphisms φ_1 and φ_2 with $\varphi_1(x) = x$ and $\varphi_2(x) = x$ for all $x \in C$. The field \mathbb{R} has only one automorphism.

3.2 Continuous additive functions

We shall prove Theorem 1 using the following special-case of a result of Ostrowski [15] and give the proof due to Kestelman [11].

Ostrowski’s theorem If $f : \mathbb{R}^n \to \mathbb{R}^n$ is additive ($f(x + y) = f(x) + f(y)$) and bounded on a L_n-measurable set A with $L_n(A) > 0$, then f is continuous.

Proof: Let $M = \sup \{|f(x)| : x \in A\}$. After a known result of Steinhaus, the set $A - A$ contains a ball around the origin with radius r. Every $x \in \mathbb{R}^n$ with $|x| < r$ can be written as $x = a - b$ $(a, b \in A)$ and therefore

$$|f(x)| = |f(a) - f(b)| \leq 2M.$$

For $n \in \mathbb{N}$ and $|x| < r/n$ is $|nx| < r$, $|f(nx)| = n|f(x)| \leq 2M$ and $|f(x)| \leq 2M/n$. Therefore f is continuous in the origin and consequently everywhere continuous. □

3.3 Souslin subfields K of C with $C : K < \infty$

The properties of analytic sets mentioned here are treated for example in the book of Parthasarathy [16].

Theorem 1 Souslin subfields K of C with $C : K < \infty$ are only $K = \mathbb{R}$ and $K = C$.

Proof: Let b_1, \ldots, b_n be a basis of C over K:

$$C = b_1K + b_2K + \ldots + b_nK.$$

For $r > 0$ we define

$$A(r) = \{b_1z_1 + b_2z_2 + \ldots + b_nz_n : (z_1, \ldots, z_n) \in K^n, |z_1| + \ldots + |z_n| \leq r\},$$

$$B(r) = \{(z_1, z_2, \ldots, z_n) \in C^n : |z_1| + \ldots + |z_n| \leq r\} \text{ and}$$

$$C(r) = B(r) \cap K^n.$$

Then $B(r)$ is compact, K^n and $C(r)$ are Souslin sets in C^n. We show: $A(r)$ is analytic.

For $z = (z_1, \ldots, z_n)$ let

$$f(z) = b_1z_1 + \ldots + b_nz_n \quad (z \in C^n) \text{ and}$$

$$g(z) = f(z) \quad (z \in C(r)).$$
Since f is continuous it follows that for every Borel set D in \mathbb{C}
\[f^{-1}(D) \] is a Borel set in \mathbb{C}^n and
\[g^{-1}(D) = f^1(D) \cap C(r) \] is a Borel set in $C(r)$.

Therefore g is Borel measurable and $A(r) = g(C(r))$ analytic.

For $\varphi \in G(\mathbb{C} : K)$ (C is normal over K) and $M = \max \{|b|, \ldots, b|\}$ is
\[|\varphi(z)| \leq Mr \text{ if } z \in A(r). \]

There is r with $L_2(A(r)) > 0$. By Ostrowski's result φ is continuous, therefore $G(\mathbb{C} : K) = \{\varphi_1\}$ and $K = \mathbb{C}$, or $G(\mathbb{C} : K) = \{\varphi_1, \varphi_2\}$ and $K = \mathbb{R}$. □

The analytic property of K is not required with the following result.

Artin's Theorem [1] For every subfield K of \mathbb{C} with $1 < \mathbb{C} : K < \infty$ is $\mathbb{C} : K = 2$. (Especially there exists no subfield K of \mathbb{R} with $1 < \mathbb{R} : K < \infty$.)

The following special-case, that can be used in the Section 5, can easily be proven. There is no subfield K of \mathbb{R} with $\mathbb{R} : K = 2$.

Suppose that K is a subfield of \mathbb{R} and $\mathbb{R} : K = 2$. Then there is a real number α with $\mathbb{R} = K(\alpha)$. Let $f(x)$ be the minimal polynomial of α and
\[f(x) = (x - \alpha_1)(x - \alpha_2), \quad (\alpha_1 = \alpha). \]

Then α_2 must be a real number.

Thus is $K(\alpha_1, \alpha_2) = K(\alpha) = \mathbb{R}$, $K(\alpha_1, \alpha_2)$ a splitting field, \mathbb{R} normal over K and $|G(\mathbb{R} : K)| = 2$.

But \mathbb{R} has only one automorphism.

4 The Main Result

Let A be a non-empty subset of \mathbb{R} and $\mathbb{R}(A)$ the subring of \mathbb{R} generated by A.

Theorem 2 For every closed subset A of \mathbb{R} with $\dim A > 0$ is $R(A) = \mathbb{R}$.

By results of Besicovitch and Davies [2] any Souslin subset A of \mathbb{R}^n with $L_\alpha(A) > 0$ contains a closed subset B with $0 < L_\alpha(B) < \infty$. For every Souslin subring S of \mathbb{R} with $\dim S > 0$ is therefore $S = \mathbb{R}$.

We use the following theorems of Marstrand to prove $\mathbb{R} : K(A) < \infty$ for every set A of Theorem 2.

For subsets E of \mathbb{R}^2 and $t \in \mathbb{R}$ be
\[E(t) = \{x + ty : (x, y) \in E\}. \]

Projection theorem (Marstrand [12]) Let E be a Souslin subset of \mathbb{R}^2 with $\dim E = \alpha$:

- a) $\alpha \leq 1 : \dim E(t) = \alpha$ for almost all $t \in \mathbb{R}$,
- b) $\alpha > 1 : L_1(E(t)) > 0$ for almost all $t \in \mathbb{R}$.

A potential theoretic proof was given by Kaufmann [10]. Generalizations can be found in the books of Falconer [6] and Mattila [14].
Product theorem (Marstrand [13]) For any subsets A and B of \mathbb{R}^n

$$\dim A \times B \geq \dim A + \dim B.$$

A generalization of the product formula for general metric spaces was proven by Wegmann [19].

Proof of Theorem 2.

1. With possibly multiple applications of the theorems of Marstrand one proves the following assertion:

There are real numbers b_1, \ldots, b_n with $L_1(b_1A + \ldots + b_nA) > 0$.

Let $b_1 = 1$ and $A_1 = A$. In the case $L_1(A) > 0$ there is nothing to prove. May $A_k = b_1A + \ldots + b_kA$ be defined and $L_1(A_1) = \ldots = L_1(A_k) = 0$.

In the case $\dim A_k \times A > 1$ exists by the projection theorem a real number b_{k+1} with $L_1(A_k + b_{k+1}A) > 0$ and the assertion is verified.

In the case $\dim A_k \times A \leq 1$ there exists by the projection theorem a real number b_{k+1} with $\dim A_k + b_{k+1}A = \dim A_k \times A$. For $A_{k+1} = A_k + b_{k+1}A$ is by the product formula

$$\dim A_{k+1} \geq \dim A_k + \dim A \geq (k + 1) \dim A.$$

After finite steps, one arrives at the assertion.

2. If U is the additive subgroup of \mathbb{R} generated by A, then

$$G = b_1U + \ldots + b_nU$$

is a group, by the theorem of Steinhaus a neighborhood of 0 and therefore $G = \mathbb{R}$. For $S = R(A)$ and for the F_σ-field

$$K = \{s/t : s, t \in S, t \neq 0\} = K(A)$$

is

$$b_1K + \ldots + b_nK = \mathbb{R}, \mathbb{R} : K \leq n$$

and therefore $K = \mathbb{R}$ (Artin’s theorem, Theorem 1).

Let $b_1 = s_1/t_1, \ldots, b_n = s_n/t_n(s_i, t_i \in S; t_1t_2\ldots t_n \neq 0)$.

Multiplying $b_1S + \ldots + b_nS = \mathbb{R}$ with $t_1t_2\ldots t$ we get

$$\mathbb{R} = d_1S + \ldots + d_nS = S(d_1, \ldots, d_n \in S), \mathbb{R} = S.$$

\[\square\]

5 **A special case of Theorem 2**

For every closed subset A of \mathbb{R} with $\dim A > 1/2$ is $R(A) = \mathbb{R}$.

Proof: It is $\dim A \times A \geq 2 \dim A > 1$. By the projection theorem (part b) there exists a real number t with

$$L_1(A + tA) > 0.$$

Let S be the F_σ-ring $R(A)$. Then $L_1(S + tS) > 0$.

5
By the theorem of Steinhaus is the additive group
\[S + tS = (S + tS) - (S + tS) \]
neighborhood of 0 and therefore \(S + tS = \mathbb{R} \).
For the field \(K = K(A) = \{a/b : a, b \in S, b \neq 0\} \) is
\[K + tK = \mathbb{R}, \quad \mathbb{R} : K \leq 2 \]
and therefore \(K = \mathbb{R} \) (\(\mathbb{R} : K = 2 \) is not possible).
Be \(t = a/b(a, b \in S; b \neq 0) \). Then \(bS + aS = \mathbb{R} = S \). \(\square \)

6 Problems

- Is there a Souslin subfield \(K \) of \(\mathbb{C} \) with
 \[0 < \dim K < 2 \text{ and } \dim K \neq 1? \]
- Is there a subfield \(K \) of \(\mathbb{R} \) with \(0 < m \cdot \dim K < 1? \)
- Which possibilities are there for a subfield \(K \neq \mathbb{R} \) of \(\mathbb{C} \) with \(\mathbb{C} : K = 2 \) concerning \(\dim K, m \cdot \dim K \) and the Baire category of \(K \)?

References

Dietmar Kahnert
Universität Stuttgart
Fachbereich Mathematik
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: dikahnert@yahoo.de
<table>
<thead>
<tr>
<th>Jahr</th>
<th>Autor</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-009</td>
<td>Kahnert, D.</td>
<td>Hausdorff Dimension of Rings</td>
</tr>
<tr>
<td>2014-008</td>
<td>Steinwart, I.</td>
<td>Measuring the Capacity of Sets of Functions in the Analysis of ERM</td>
</tr>
<tr>
<td>2014-007</td>
<td>Steinwart, I.</td>
<td>Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties</td>
</tr>
<tr>
<td>2014-005</td>
<td>Schmid, J.; Griesemer, M.</td>
<td>Integration of Non-Autonomous Linear Evolution Equations</td>
</tr>
<tr>
<td>2014-004</td>
<td>Markhasin, L.</td>
<td>L_2- and $S_{p,q}^r B$-discrepancy of (order 2) digital nets</td>
</tr>
<tr>
<td>2014-003</td>
<td>Markhasin, L.</td>
<td>Discrepancy and integration in function spaces with dominating mixed smoothness</td>
</tr>
<tr>
<td>2014-002</td>
<td>Eberts, M.; Steinwart, I.</td>
<td>Optimal Learning Rates for Localized SVMs</td>
</tr>
<tr>
<td>2014-001</td>
<td>Giesselmann, J.</td>
<td>A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity</td>
</tr>
<tr>
<td>2013-016</td>
<td>Steinwart, I.</td>
<td>Fully Adaptive Density-Based Clustering</td>
</tr>
<tr>
<td>2013-015</td>
<td>Steinwart, I.</td>
<td>Some Remarks on the Statistical Analysis of SVMs and Related Methods</td>
</tr>
<tr>
<td>2013-014</td>
<td>Rohde, C.; Zeiler, C.</td>
<td>A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension</td>
</tr>
<tr>
<td>2013-012</td>
<td>Moroianu, A.; Semmelmann, U.</td>
<td>Generalized Killing Spinors on Spheres</td>
</tr>
<tr>
<td>2013-010</td>
<td>Corli, A.; Rohde, C.; Schleper, V.</td>
<td>Parabolic Approximations of Diffusive-Dispersive Equations</td>
</tr>
<tr>
<td>2013-009</td>
<td>Nava-Yazdani, E.; Polthier, K.</td>
<td>De Casteljau's Algorithm on Manifolds</td>
</tr>
<tr>
<td>2013-008</td>
<td>Bächle, A.; Margolis, L.</td>
<td>Rational conjugacy of torsion units in integral group rings of non-solvable groups</td>
</tr>
<tr>
<td>2013-007</td>
<td>Knarr, N.; Stroppel, M.J.</td>
<td>Heisenberg groups over composition algebras</td>
</tr>
<tr>
<td>2013-006</td>
<td>Knarr, N.; Stroppel, M.J.</td>
<td>Heisenberg groups, semifields, and translation planes</td>
</tr>
<tr>
<td>2013-005</td>
<td>Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.</td>
<td>A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure</td>
</tr>
<tr>
<td>2013-004</td>
<td>Griesemer, M.; Wellig, D.</td>
<td>The Strong-Coupling Polaron in Electromagnetic Fields</td>
</tr>
<tr>
<td>2013-003</td>
<td>Kabil, B.; Rohde, C.</td>
<td>The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces</td>
</tr>
<tr>
<td>2013-002</td>
<td>Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.</td>
<td>Strong universal consistent estimate of the minimum mean squared error</td>
</tr>
<tr>
<td>2012-018</td>
<td>Kinneerle, W.; Konovalov, A.</td>
<td>On the Prime Graph of the Unit Group of Integral Group Rings of Finite Groups II</td>
</tr>
<tr>
<td>2012-017</td>
<td>Stroppel, B.; Stroppel, M.</td>
<td>Desargues, Doily, Dualities, and Exceptional Isomorphisms</td>
</tr>
</tbody>
</table>

2012-015 Steinke, G.F.; Stroppel, M.J.: Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane

2012-014 Steinke, G.F.; Stroppel, M.J.: Finite elation Laguerre planes admitting a two-transitive group on their set of generators

2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces

2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs

2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces

2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations

2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces

2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring

2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily

2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory

2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations

2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces

2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park

2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group

2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression

2011-023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence

2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors

2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks

2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions

2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data

2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras

2010-001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one

2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems

2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups

2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation

2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces

2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^3 and of the 3-torus

2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps

2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities

2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope

2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $PSL(2,q)$

2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term

2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant magnetic field

2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides

2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry

2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions