Homogeneous almost quaternion-Hermitian manifolds

Andrei Moroianu, Mihaela Pilca, Uwe Semmelmann

Preprint 2012/016
Homogeneous almost quaternion-Hermitian manifolds

Andrei Moroianu, Mihaela Pilca, Uwe Semmelmann
Homogeneous Almost Quaternion-Hermitian Manifolds

Abstract. An almost quaternion-Hermitian structure on a Riemannian manifold \((M^{4n}, g)\) is a reduction of the structure group of \(M\) to \(\text{Sp}(n)\text{Sp}(1) \subset \text{SO}(4n)\). In this paper we show that a compact simply connected homogeneous almost quaternion-Hermitian manifold of non-vanishing Euler characteristic is either a Wolf space, or \(\mathbb{S}^2 \times \mathbb{S}^2\), or the complex quadric \(\text{SO}(7)/\text{U}(3)\).

2010 Mathematics Subject Classification: Primary: 53C30, 53C35, 53C15. Secondary: 17B22

Keywords: Quaternion-Hermitian structures, homogeneous spaces, root systems, Clifford structures.

1. Introduction

The notion of (even) Clifford structures on Riemannian manifolds was introduced in [12]. Roughly speaking, a rank \(r\) (even) Clifford structure on \(M\) is a rank \(r\) Euclidean bundle whose (even) Clifford algebra bundle acts on the tangent bundle of \(M\). For \(r = 3\), an even Clifford structure on \(M\) is just an almost quaternionic structure, i.e. a rank 3 sub-bundle \(Q\) of the endomorphism bundle \(\text{End} (T M)\) locally spanned by three endomorphisms \(I, J, K\) satisfying the quaternionic relations
\[I^2 = J^2 = K^2 = -\text{id}, \quad IJ = K. \]

If moreover \(Q \subset \text{End}^{-}(T M)\) (or, equivalently, if \(I, J, K\) are \(g\)-orthogonal), the structure \((M, g, Q)\) is called almost quaternion-Hermitian [7, 8, 9, 17].

Homogeneous even Clifford structures on homogeneous compact manifolds of non-vanishing Euler characteristic were studied in [11], where it is established an upper bound for their rank, as well as a description of the limiting cases. In this paper we consider the other extremal case, namely even Clifford structures with the lowest possible (non-trivial) rank, which is 3 and give the complete classification of compact homogeneous almost quaternion-Hermitian manifolds \(G/H\) with non-vanishing Euler characteristic. This last assumption turns out to be crucial at several places throughout the proof (see below). Without it, the classification is completely out of reach, but there are lots of homogeneous examples constructed for instance by D. Joyce [4, 5] and O. Maciá [6].

Our classification result is the following:

Theorem 1.1. A compact simply connected homogeneous manifold \(M = G/H\) of non-vanishing Euler characteristic carries a homogeneous almost quaternion-Hermitian structure if and only if it belongs to the following list:

This work was supported by the contract ANR-10-BLAN 0105 “Aspects Conformes de la Géométrie”. The second-named author thanks the Centre de Mathématiques de l’École Polytechnique for hospitality during the preparation of this work.

1
• Wolf spaces G/N where G is any compact simple Lie group and N is the normalizer of some subgroup $\text{Sp}(1) \subset G$ determined by a highest root of G, cf. [18].
• $\mathbb{S}^2 \times \mathbb{S}^2$.
• $\text{SO}(7)/\text{U}(3)$.

Let us first give some comments on the above list. The Wolf spaces are quaternion-Kähler manifolds [18], so they admit not only a topological but even a holonomy reduction to $\text{Sp}(n)\text{Sp}(1)$. In dimension 4, every orientable manifold is almost quaternion-Hermitian since $\text{Sp}(1)\text{Sp}(1) = \text{SO}(4)$. In this dimension there exist (up to homothety) only two compact simply connected homogeneous manifolds with non-vanishing Euler characteristic: $\mathbb{S}^2 \times \mathbb{S}^2$ and \mathbb{S}^4. The latter is already a Wolf space since $\mathbb{S}^4 = \mathbb{H}^1$, this is why in dimension 4, the only extra space in the list is $\mathbb{S}^2 \times \mathbb{S}^2$. Finally, the complex quadric $\text{SO}(7)/\text{U}(3) \subset \mathbb{C}P^7$, which incidentally is also the twistor space of \mathbb{S}^6, carries a 1-parameter family of $\text{Sp}(3)\text{U}(1)$ structures with fixed volume. Motivated by our present classification, F. Martín Cabrera and A. Swann [10] are currently investigating the quaternion Hermitian type of this family.

The outline of the proof of Theorem 1.1 is as follows: The first step is to show (in Proposition 3.3) that G has to be a simple Lie group, unless $M = \mathbb{S}^2 \times \mathbb{S}^2$. The condition $\chi(M) \neq 0$ (which is equivalent to $\text{rk}(H) = \text{rk}(G)$) is used here in order to ensure that every subgroup of maximal rank of a product $G_1 \times G_2$ is itself a product. The next step is to rule out the case $G = G_2$ which is the only simple group for which the ratio between the length of the long and short roots is $\sqrt{3}$. Once this is done, we can thus assume that either all roots of G have the same length, or the ratio between the length of the long and short roots is $\sqrt{2}$. We further show that if G/H is symmetric, then H has an $\text{Sp}(1)$-factor, so M is a Wolf space.

Now, since $\text{rk}(H) = \text{rk}(G)$, the weights of the (complexified) isotropy representation $\mathfrak{m}^\mathbb{C}$ can be identified with a subset of the root system of G. We show that the existence of a homogeneous almost quaternion-Hermitian structure on G/H implies that the set of weights $\mathcal{W}(\mathfrak{m}^\mathbb{C})$ can be split into two distinct subsets, one of which is obtained from the other by a translation (Proposition 3.1 below). Moreover, if G/H is not symmetric, then $[\mathfrak{m}, \mathfrak{m}] \cap \mathfrak{m} \neq 0$, so $(\mathcal{W}(\mathfrak{m}^\mathbb{C}) + \mathcal{W}(\mathfrak{m}^\mathbb{C})) \cap \mathcal{W}(\mathfrak{m}^\mathbb{C}) \neq \emptyset$. Putting all this information together we are then able to show, using the properties of root systems, that there is one single isotropy weight system satisfying these conditions, namely the isotropy representation of $\text{SO}(7)/\text{U}(3)$, whose restriction to $\text{SU}(3)$ is isomorphic to $\mathbb{C}^3 \oplus (\mathbb{C}^3)^*$ and is therefore quaternionic.

2. Preliminaries

Let $M = G/H$ be a homogeneous space. Throughout this paper we make the following assumptions:
• M is compact (and thus G and H are compact, too).
• The infinitesimal isotropy representation is faithful (this is always the case after taking an appropriate quotient of G).
• M has non-vanishing Euler characteristic: $\chi(M) \neq 0$, or, equivalently, $\text{rk}(H) = \text{rk}(G)$.

\(\bullet \) \(M \) is simply connected. An easy argument using the exact homotopy sequence shows that by changing the representation of \(M \) as homogeneous space if necessary, one can assume that \(G \) is simply connected and \(H \) is connected (see [13] for example).

Denote by \(\mathfrak{h} \) and \(\mathfrak{g} \) the Lie algebras of \(H \) and \(G \) and by \(\mathfrak{m} \) the orthogonal complement of \(\mathfrak{h} \) in \(\mathfrak{g} \) with respect to some \(\text{ad}_\mathfrak{g} \)-invariant scalar product on \(\mathfrak{g} \). The restriction to \(\mathfrak{m} \) of this scalar product defines a homogeneous Riemannian metric \(g \) on \(M \).

An almost quaternion-Hermitian structure on a Riemannian manifold \((M,g)\) is a three-dimensional sub-bundle of the bundle of skew-symmetric endomorphisms \(\text{End}^{-}(\text{TM}) \), which is locally spanned by three endomorphisms satisfying the quaternion relations [7, 17].

In the case where \(M = G/H \) is homogeneous, such a structure is called homogeneous if this three-dimensional sub-bundle is defined by a three-dimensional \(H \)-invariant summand of the second exterior power of the isotropy representation \(\Lambda^{2}\mathfrak{m} = \text{End}^{-}(\mathfrak{m}) \). For our purposes, we give the following equivalent definition, which corresponds to the fact that an almost quaternion-Hermitian structure is just a rank 3 even Clifford structure (cf. [11, 12]):

Definition 2.1. A homogeneous almost quaternion-Hermitian structure on the Riemannian homogeneous space \((G/H,g)\) is an orthogonal representation \(\rho : H \to \text{SO}(3) \) and an \(H \)-equivariant Lie algebra morphism \(\varphi : \mathfrak{so}(3) \to \text{End}^{-}(\mathfrak{m}) \) extending to an algebra representation of the even real Clifford algebra \(\text{Cl}^0_3 \) on \(\mathfrak{m} \).

The \(H \)-equivariance of the morphism \(\varphi : \mathfrak{so}(3) \to \text{End}^{-}(\mathfrak{m}) \) is with respect to the following actions of \(H \): the action on \(\mathfrak{so}(3) \) is given by the composition of the adjoint representation of \(\text{SO}(3) \) with \(\rho \), and the action on \(\text{End}^{-}(\mathfrak{m}) \) is the one induced by the isotropy representation \(\iota \) of \(H \). Since \(\varphi \) extends to a representation of \(\text{Cl}^0_3 \simeq \mathbb{H} \) on \(\mathfrak{m} \), the above definition readily implies the following result (see also [11, Lemma 3.2] or [15]):

Lemma 2.2. The complexified isotropy representation \(\iota_{*} \) on \(\mathfrak{m}^{\mathbb{C}} \) is isomorphic to the tensor product \(\mathfrak{m}^{\mathbb{C}} = H \otimes_{\mathbb{C}} E \), where \(H \) is defined by the composition \(\mu := \xi \circ \rho_{*} \) of \(\rho_{*} \) with the spin representation \(\xi \) of \(\mathfrak{so}(3) = \text{spin}(3) = \text{sp}(1) \) on \(\mathbb{H} \), and \(E \) is defined by the composition \(\lambda := \pi \circ \iota_{*} \) of the isotropy representation with the projection of \(\mathfrak{h} \) to the kernel of \(\rho_{*} \).

3. The Classification

In this section we classify all compact simply connected homogeneous almost quaternion-Hermitian manifolds \(M = G/H \) with non-vanishing Euler characteristic.

We choose a common maximal torus of \(H \) and \(G \) and denote by \(\mathfrak{t} \subset \mathfrak{h} \) its Lie algebra. Then the root system \(R(\mathfrak{g}) \subset \mathfrak{t}^{*} \) is the disjoint union of the root system \(R(\mathfrak{h}) \) and the set \(\mathcal{W} \) of weights of the complexified isotropy representation of the homogeneous space \(G/H \).

This follows from the fact that the isotropy representation is given by the restriction to \(H \) of the adjoint representation of \(\mathfrak{g} \).

The weights of the complex spin representation of \(\mathfrak{so}(3) \) on \(\Sigma_{3}^{\mathbb{C}} \simeq \mathbb{H} \) are \(\mathcal{W}(\Sigma_{3}^{\mathbb{C}}) = \{ \pm \frac{1}{2} e_1 \} \), where \(e_1 \) is some element of norm 1 of the dual of some Cartan sub-algebra of \(\mathfrak{so}(3) \). We denote by \(\beta \in \mathfrak{t}^{*} \) the pull-back through \(\mu \) of the vector \(\frac{1}{2} e_1 \) and by \(A := \{ \pm \alpha_1, \ldots, \pm \alpha_n \} \subset \mathfrak{t}^{*} \) the weights of the self-dual representation \(\lambda \). By Lemma 2.2, we
obtain the following description of the weights of the isotropy representation of any homogeneous almost quaternion-Hermitian manifold \(M = G/H \), which is a particular case of \([11, Proposition 3.3]\):

Proposition 3.1. The set \(\mathcal{W} := \mathcal{W}(m) \) of weights of the isotropy representation is given by:

\[
\mathcal{W} = \{ \varepsilon_i \alpha_i + \varepsilon_\beta \} | 1 \leq i \leq n, \varepsilon_\alpha, \varepsilon_\beta \in \{ \pm 1 \}.
\]

As an immediate consequence we have:

Lemma 3.2. Let \((G/H, g, \rho, \varphi)\) be a homogeneous almost quaternion-Hermitian structure as in Definition \(2.1\). Then the infinitesimal representation \(\rho_* : h \rightarrow \mathfrak{so}(3) \) does not vanish.

Proof. Suppose for a contradiction that \(\rho_* = 0 \). Then the \(h \)-representation \(H \) defined in Lemma \(2.2\) is trivial, so \(\beta = 0 \) and \(m^C = E \oplus E \). Every weight of the (complexified) isotropy representation appears then twice in the root system of \(G \), which is impossible (cf. \[16, p. 38\]). \(\Box \)

Our next goal is to show that the automorphism group of a homogeneous almost quaternion-Hermitian manifold is in general a simple Lie group:

Proposition 3.3. If \(G/H \) is a simply connected compact homogeneous almost quaternion-Hermitian manifold with non-vanishing Euler characteristic, then either \(G \) is simple or \(G = SU(2) \times SU(2) \) and \(M = S^2 \times S^2 \).

Proof. We already know that \(G \) is compact and simply connected. If \(G \) is not simple, then \(G = G_1 \times G_2 \) with \(\dim(G_i) \geq 3 \). Let \(g_i \) denote the Lie algebra of \(G_i \), so that \(g = g_1 \oplus g_2 \). By a classical result of Borel and Siebenthal (\([3, p. 210]\)), the Lie algebra of the subgroup \(H \) splits as \(h = h_1 \oplus h_2 \), where \(h_i = h \cap g_i \). Correspondingly, the isotropy representation splits as \(m = m_1 \oplus m_2 \), where \(m_i \) is the isotropy representation of \(h_i \) in \(g_i \).

Let \(\{ e_1, e_2, e_3 \} \) be an orthonormal basis of \(\mathfrak{so}(3) \) and let us denote by \(J_i := \varphi(e_i) \), for \(1 \leq i \leq 3 \). The \(H \)-equivariance of \(\varphi \) implies that

\[
\varphi(\rho_*(X)e_i) = [\text{ad}_X, J_i], \quad \forall X \in h, \ 1 \leq i \leq 3.
\]

We claim that the representation \(\rho_* \) does not vanish on \(h_1 \) or on \(h_2 \). Assume for instance that \(\rho_*(h_1) = 0 \). We express each endomorphism \(J_i \) of \(m = m_1 \oplus m_2 \) as

\[
J_i = \begin{pmatrix} A_i & B_i \\ C_i & D_i \end{pmatrix}.
\]

For every \(X \in h_i \), \([2]\) shows that \(\text{ad}_X \) commutes with \(J_i \). Expressing

\[
\text{ad}_X = \begin{pmatrix} \text{ad}_X^{g_1} & 0 \\ 0 & 0 \end{pmatrix}
\]

we get in particular that \(\text{ad}_X^{g_1} \circ B_i = 0 \) for all \(X \in h_1 \). On the other hand, since \(\text{rk}(h_1) = \text{rk}(g_1) \), there exists no vector in \(m_1 \) commuting with all \(X \in h_1 \), so \(B_i = 0 \) and thus \(C_i = -B_i^* = 0 \) for \(1 \leq i \leq 3 \). However, this would imply that the map \(\varphi_1 : \mathfrak{so}(3) \rightarrow \text{End}^-(m_1) \)
given by $\varphi_i(e_i) = A_i$ for $1 \leq i \leq 3$ is a homogeneous almost quaternion-Hermitian structure on G_1/H_1 with vanishing ρ_\ast, which contradicts Lemma 3.2. This proves our claim.

Now, since $\rho_\ast : h \to so(3)$ is a Lie algebra morphism, we must have in particular

$$[\rho_\ast(h_1), \rho_\ast(h_2)] = 0.$$

By changing the orthonormal basis $\{e_1, e_2, e_3\}$ if necessary, we thus may assume that $\rho_\ast(h_1) = \rho_\ast(h_2) = \langle e_1 \rangle$. The Lie algebras h_1 and h_2 decompose as $h_i = h_i' \oplus \langle X_i \rangle$ where $h_i' := ker(\rho_\ast) \cap h_i$ and $\rho_\ast(X_i) = e_1$ for $1 \leq i \leq 2$.

From (2), the following relations hold:

(3)

$$[ad_{X_1}, J_2] = J_3, \quad [ad_{X_1}, J_3] = -J_2, \quad 1 \leq i \leq 2.$$

Like before we can write

$$ad_{X_1} = \begin{pmatrix} ad_{X_1}^{h_1} & 0 \\ 0 & 0 \end{pmatrix}, \quad ad_{X_2} = \begin{pmatrix} 0 & 0 \\ 0 & ad_{X_2}^{h_2} \end{pmatrix},$$

so (3) implies that $A_2 = A_3 = 0$ and $D_2 = D_3 = 0$. In particular

$$-1 = J_2^2 = \begin{pmatrix} 0 & B_2 \\ C_2 & 0 \end{pmatrix}^2 = \begin{pmatrix} B_2 C_2 & 0 \\ 0 & C_2 B_2 \end{pmatrix},$$

thus showing that B_2 defines an isomorphism between m_2 and m_1 (whose inverse is $-C_2$).

On the other hand, since by (2) ad_X commutes with J_2 for all $X \in h_1'$, we obtain as before that $ad_{X_1}^{h_1} \circ B_2 = 0$ for all $X \in h_1'$. Since B_2 is onto, this shows that the isotropy representation of G_1/H_1 restricted to h_1' vanishes, so $h_1' = 0$ and similarly $h_2' = 0$. We therefore have $h_1 = h_2 = \mathbb{R}$, and since $rk(G_i) = rk(H_i) = 1$, we get $g_1 = g_2 = su(2)$. We thus have $G = SU(2) \times SU(2)$, and $H = T^2$ is a maximal torus, so $M = S^2 \times S^2$.

We are in position to complete the proof of our main result:

Proof of Theorem 1.1. By Proposition 3.3, we may assume that G is simple. We first study the case $G = G_2$ (this is the only simple group for which the ratio between the length of long and short roots is neither 1, nor $\sqrt{2}$). The only connected subgroups of rank 2 of G_2 are $U(2)$, $SU(3)$, $SO(4)$ and T^2. The spaces $G_2/U(2)$ and $G_2/SU(3)$ have dimension 10 and 6 respectively, therefore they can not carry almost quaternion-Hermitian structures.

The quotient $G_2/SO(4)$ is a Wolf space, so it remains to study the generalized flag manifold G_2/T^2. We claim that this space has no homogeneous almost quaternion-Hermitian structure. Indeed, if this were the case, using Proposition 3.1 one could express the root system of G_2 as the disjoint union of two subsets

$$W^+ := \{\varepsilon_i \alpha_i + \beta\}_{1 \leq i \leq 3, \varepsilon_i \in \{\pm 1\}}, \quad W^- := \{\varepsilon_i \alpha_i - \beta\}_{1 \leq i \leq 3, \varepsilon_i \in \{\pm 1\}}$$

such that there exists some vector $v := 2\beta$ with $W^+ = v + W^-$. On the other hand, it is easy to check that there exist no such partition of $R(G_2)$.

Consider now the case where $M = G/H$ is a symmetric space. If M is a Wolf space there is nothing to prove, so assume from now on that this is not the case. The Lie algebra of H can be split as $h = ker(\rho_\ast) \oplus h_0$, where h_0 denotes the orthogonal complement of $ker(\rho_\ast)$. Clearly h_0 is isomorphic to $\rho_\ast(h) \subset so(3)$ so by Lemma 3.2 $h_0 = u(1)$ or $h_0 = sp(1)$. The
latter case can not occur since our assumption that M is not a Wolf space implies that \mathfrak{h} has no $\mathfrak{sp}(1)$-summand. We are left with the case when $\mathfrak{h} = \ker(\rho_*) \oplus \mathfrak{u}(1)$. We claim that this case can not occur either. Indeed, if such a space would carry a homogeneous almost quaternion-Hermitian structure, then the representation of $\ker(\rho_*)$ on \mathfrak{m} would be quaternionic. Two anti-commuting complex structures I, J of \mathfrak{m} induce non-vanishing elements a_I, a_J in the center of $\ker(\rho_*)$ (see the proof of [14, Lemma 2.4]). On the other hand, the adjoint actions of a_I and a_J on \mathfrak{m} are proportional to I and J respectively ([14, Eq. (4)]) and thus anti-commute, contradicting the fact that a_I and a_J commute (being central elements).

We can assume from now on, that $M = G/H$ is non-symmetric, G is simple and $G \neq G_2$. Up to a rescaling of the ad_G-invariant metric on \mathfrak{g}, we may thus assume that all roots of \mathfrak{g} have square length equal to 1 or 2.

From (1), it follows that $R(\mathfrak{g}) = \mathcal{W}(\mathfrak{m}) \cup R(\mathfrak{h}) = \{ \varepsilon_1\alpha_i + \varepsilon_1\beta \}_{1 \leq i \leq n, \varepsilon \in \{ \pm 1 \}} \cup R(\mathfrak{h})$.

Up to a change of signs of the α_i’s, we may assume:

$\langle \beta, \alpha_i \rangle \geq 0$, for all $1 \leq i \leq n$.

Then either the roots $\beta + \alpha_i$ and $\beta - \alpha_i$ of G have the same length, or $|\beta + \alpha_i|^2 = 2$ and $|\beta - \alpha_i|^2 = 1$. This shows that for each $1 \leq i \leq n$,

$\langle \beta, \alpha_i \rangle \in \begin{cases} 0, & \text{for } 1 \leq i \leq n, \\ \frac{1}{4}, & \text{for } 1 \leq i \leq n. \end{cases}$

Then the roots $\beta + \alpha_i$ and $\beta - \alpha_i$ of G have the same length, or $|\beta + \alpha_i|^2 = 2$ and $|\beta - \alpha_i|^2 = 1$. This shows that for each $1 \leq i \leq n$,

$\langle \beta, \alpha_i \rangle \in \begin{cases} 0, & \text{for } 1 \leq i \leq n, \\ \frac{1}{4}, & \text{for } 1 \leq i \leq n. \end{cases}$

From the general property of root systems [10] below, it follows that:

$|\beta|^2 \in \begin{cases} \frac{1}{4}, & \text{for } 1 \leq i \leq n, \\ \frac{1}{4}, & \text{for } 1 \leq i \leq n. \end{cases}$

Since the homogeneous space G/H is not symmetric, we have $[\mathfrak{m}, \mathfrak{m}] \not\subseteq \mathfrak{h}$, so there exist subscripts $i, j, k \in \{1, \ldots, n\}$ such that $(\pm \beta \pm \alpha_i) + (\pm \beta \pm \alpha_j) = \pm \beta \pm \alpha_k$. Taking (5) into account, we need to check the following possible cases (up to a permutation of the subscripts):

a) $\beta = \pm 2\alpha_1 \pm \alpha_2$,
b) $\beta = \frac{\alpha_1}{3}$,
c) $\beta = \frac{\alpha_1 \pm \alpha_2 \pm \alpha_3}{3}$,
d) $\beta = \alpha_1 \pm \alpha_2 \pm \alpha_3$.

We will show that cases a), b) and c) can not occur and that in case d) there is only one solution.

a) If $\beta = 2\alpha_1 + \alpha_2$, then $\beta + \alpha_2 = 2(\beta - \alpha_1)$ and this would imply the existence of two proportional roots, $\beta + \alpha_2$ and $\beta - \alpha_1$, in $\mathcal{W} \subseteq R(\mathfrak{g})$, contradicting the property R2 of root systems (cf. Definition A.1). For all the other possible choices of signs in a) we obtain a similar contradiction.
b) If $\beta = \frac{\alpha_1}{3}$, then there exist two proportional roots: $\beta + \alpha_1 = -2(\beta - \alpha_1)$ in $R(\mathfrak{g})$, which again contradicts R2.
c) If $\beta = \frac{a_1 + a_2 + a_3}{3}$, then $|\beta|^2 = \frac{1}{3}(\langle \beta, \alpha_1 \rangle \pm \langle \beta, \alpha_2 \rangle \pm \langle \beta, \alpha_3 \rangle)$. From (5) and (6), it follows that the only possibility is:

$$\beta = \frac{a_1 + a_2 + a_3}{3}, |\beta|^2 = \frac{1}{4} \text{ and } \langle \beta, \alpha_i \rangle = \frac{1}{4}, \text{ for } 1 \leq i \leq 3.$$

Together with (10), this implies that for each $1 \leq i \leq 3$ we have: $|\beta + \alpha_i|^2 = 2$, $|\beta - \alpha_i|^2 = 1$ and $|\alpha_i|^2 = \frac{2}{3}$. Thus, for all $1 \leq i, j \leq 3, i \neq j$, we have:

$$\langle \beta + \alpha_i, \beta - \alpha_j \rangle = \frac{1}{4} - \langle \alpha_i, \alpha_j \rangle,$$

which by (10) must be equal to 0 or ± 1, showing that $\langle \alpha_i, \alpha_j \rangle \in \{-\frac{3}{4}, \frac{1}{4}, \frac{5}{4}\}$. On the other hand, a direct computation shows that

$$\langle \alpha_1, \alpha_2 \rangle + \langle \alpha_1, \alpha_3 \rangle + \langle \alpha_2, \alpha_3 \rangle = \frac{1}{2} \left(9|\beta|^2 - \frac{15}{4} \right) = -\frac{3}{4},$$

which is not possible for any of the above values of the scalar products, yielding a contradiction.

d) From (5) and (6), it follows that there are three possible sub-cases:

Case 1. $\beta = \alpha_1 \pm \alpha_2 \pm \alpha_3, |\beta|^2 = \frac{1}{3}, \langle \beta, \alpha_1 \rangle = \frac{1}{3}, \langle \beta, \alpha_2 \rangle = \langle \beta, \alpha_3 \rangle = 0$.

Case 2. $\beta = \alpha_1 + \alpha_2 - \alpha_3, |\beta|^2 = \frac{1}{3}, \langle \beta, \alpha_1 \rangle = \frac{1}{3}, 1 \leq i \leq 3$.

Case 3. $\beta = \alpha_1 + \alpha_2 + \alpha_3, |\beta|^2 = \frac{1}{3}, \langle \beta, \alpha_i \rangle = \frac{1}{3}, 1 \leq i \leq 3$.

Case 1. From (10) it follows $|\alpha_1|^2 = \frac{5}{4}$ and $|\alpha_2|^2 = |\alpha_3|^2 = \frac{3}{4}$. Since $\langle \beta + \alpha_1, \beta - \alpha_1 \rangle = -1$ and $|\beta + \alpha_1|^2 = 2|\beta - \alpha_1|^2$, the reflexion property (11) shows that $2\beta = (\beta + \alpha_1) + (\beta - \alpha_1)$ and $3\beta - \alpha_1 = (\beta + \alpha_1) + 2(\beta - \alpha_1)$ belong to $\mathcal{R}(\mathfrak{g})$. We show that these roots actually belong to $\mathcal{R}(\mathfrak{h})$, i.e. that $2\beta, 3\beta - \alpha_1 \notin \mathcal{W}$. We argue by contradiction.

Let us first assume that $2\beta \in \mathcal{W}$. Then there exists $k, 1 \leq k \leq n$, such that $2\beta = \pm \beta \pm \alpha_k$. If $\beta = \pm \alpha_k$ we obtain that $0 = \beta \pm \alpha_k$ belongs to $\mathcal{R}(\mathfrak{g})$, which contradicts the property R1 of root systems. If $\beta = \pm \frac{2\alpha_k}{3}$, then the roots $\beta + \alpha_k$ and $\beta - \alpha_k$ are proportional, which contradicts R2.

Now we assume that $3\beta - \alpha_1 \in \mathcal{W}$ and conclude similarly. In this case there exists $k, 1 \leq k \leq n$ such that either $2\beta = \alpha_1 \pm \alpha_k$ or $4\beta = \alpha_1 \pm \alpha_k$. In the first case we obtain $\beta - \alpha_1 = -\beta \pm \alpha_k$, which contradicts the fact that roots of G are simple. In the second case (5) yields $|\beta|^2 = \frac{1}{3}(\langle \beta, \alpha_1 \rangle \pm \frac{1}{3} \langle \beta, \alpha_k \rangle \leq \frac{1}{3}$, which contradicts (6).

This shows that $2\beta, 3\beta - \alpha_1 \in \mathcal{R}(\mathfrak{h})$. Moreover $\langle 2\beta, 3\beta - \alpha_1 \rangle = 1$ and thus, by (11), their difference is a root of \mathfrak{h} too: $\beta = (3\beta - \alpha_1) - (2\beta) \in \mathcal{R}(\mathfrak{h})$, which is in contradiction with $\beta - \alpha_1 \in \mathcal{W}$, Consequently, case 1. can not occur.

Case 2. From (10) it follows that $|\alpha_i|^2 = \frac{5}{4}$, for all $1 \leq i \leq 3$. For all $1 \leq i, j \leq 3, i \neq j$, we then compute: $\langle \beta + \alpha_i, \beta + \alpha_j \rangle = \frac{2}{3} + \langle \alpha_i, \alpha_j \rangle$, which by (10) must be equal to 0 or ± 1, implying that $\langle \alpha_i, \alpha_j \rangle \in \{-\frac{7}{4}, \frac{1}{4}, \frac{7}{4}\}$. On the other hand, we obtain

$$\langle \alpha_1, \alpha_2 \rangle + \langle \alpha_1, \alpha_3 \rangle + \langle \alpha_2, \alpha_3 \rangle = \frac{1}{2} \left(|\beta|^2 - \frac{15}{4} \right) = -\frac{7}{4},$$
which is not possible for any of the above values of the scalar products, yielding again a contradiction.

Case 3. From (10) it follows that \(|\alpha_i|^2 = \frac{3}{4} \), for all \(1 \leq i \leq 3 \). Computing the norm of \(\beta - \alpha_k = \alpha_i + \alpha_j \), where \(\{i, j, k\} \) is any permutation of \(\{1, 2, 3\} \), yields that \(\langle \alpha_i, \alpha_j \rangle = -\frac{1}{4} \), for all \(1 \leq i, j \leq 3 \), \(i \neq j \). We then get
\[
\langle \beta + \alpha_i, \beta + \alpha_j \rangle = 1,
\]
for all \(1 \leq i, j \leq 3 \), \(i \neq j \), which by the reflexion property (11) implies that
\[
\{\alpha_i - \alpha_j\}_{1 \leq i, j \leq 3} \subseteq \mathcal{R}(g).
\]

We claim that \(n = 3 \) (recall that \(n \) denotes the number of vectors \(\alpha_i \), or equivalently the quaternionic dimension of \(M \)). Assume for a contradiction that \(n \geq 4 \). By (5), \(\langle \beta, \alpha_l \rangle = \frac{1}{4} \) or \(\langle \beta, \alpha_l \rangle = 0 \), for any \(4 \leq l \leq n \).

If \(\langle \beta, \alpha_l \rangle = \frac{1}{4} \) for some \(l \geq 4 \), it follows that \(|\alpha_l|^2 = \frac{3}{4} \) and \(|\beta + \alpha_l|^2 = 2 \), implying by (10) that the scalar product \(\langle \beta - \alpha_i, \beta + \alpha_l \rangle \) belongs to \(\{\pm 1, 0\} \), for \(1 \leq i \leq 3 \). This further yields that \(\langle \alpha_i, \alpha_l \rangle \in \{\frac{1}{2}, \frac{3}{4}, -\frac{1}{4}\} \). On the other hand, the Cauchy-Schwarz inequality applied to \(\alpha_i \) and \(\alpha_l \) and the fact that \(\mathcal{W} \) has only simple roots (being a root sub-system) imply that the only possible value is \(\langle \alpha_i, \alpha_l \rangle = -\frac{1}{4} \), for \(1 \leq i \leq 3 \) and \(4 \leq l \leq n \). Thus, \(|\beta + \alpha_l|^2 = 0 \), which contradicts the property R1 of root systems (cf. Definition A.1).

We therefore have \(\langle \beta, \alpha_i \rangle = 0 \), for all \(4 \leq l \leq n \). If \(|\beta + \alpha_l|^2 = 2 \) for some \(l \geq 4 \) then \(|\alpha_l|^2 = \frac{3}{4} \), so \(\langle \beta - \alpha_l, \beta + \alpha_l \rangle = -\frac{1}{2} \), contradicting (10). Thus \(|\beta + \alpha_l|^2 = 1 \) for all \(4 \leq l \leq n \). If \(n \geq 5 \), (10) implies
\[
\langle \beta - \alpha_l, \beta + \alpha_s \rangle, \langle \beta - \alpha_l, \beta - \alpha_s \rangle \in \left\{ 0, \pm \frac{1}{2} \right\}, \quad \text{for} \, 4 \leq l, s \leq n, \, l \neq s.
\]
This contradicts the equality \(\langle \beta - \alpha_l, \beta + \alpha_s \rangle + \langle \beta - \alpha_l, \beta - \alpha_s \rangle = \frac{3}{2} \), showing that \(n \leq 4 \).

It remains to show that the existence of \(\alpha_4 \in \mathcal{A} \), which by the above necessarily satisfies \(\langle \beta, \alpha_4 \rangle = 0 \) and \(|\alpha_4|^2 = \frac{1}{4} \), leads to a contradiction. By (10), it follows that
\[
1 + \langle \alpha_i, \alpha_4 \rangle = \langle \beta + \alpha_i, \beta + \alpha_4 \rangle \in \{\pm 1, 0\}, \quad \forall \, 1 \leq i \leq 3.
\]
This constraint together with the Cauchy-Schwarz inequality, \(|\langle \alpha_i, \alpha_4 \rangle| \leq \frac{\sqrt{3}}{4} \), implies that \(\langle \alpha_i, \alpha_4 \rangle = 0 \), for \(1 \leq i \leq 3 \).

Applying the reflexion property (11) to \(\beta + \alpha_4 \) and \(\beta + \alpha_i \), for \(1 \leq i \leq 3 \), which satisfy \(\langle \beta + \alpha_i, \beta + \alpha_4 \rangle = 1 \) and \(|\beta + \alpha_i|^2 = 2|\beta + \alpha_4|^2 \), it follows that \(\alpha_i - \alpha_4, \beta + 2\alpha_4 - \alpha_i \in \mathcal{R}(g) \). We now show that all these roots actually belong to \(\mathcal{R}(h) \). Let us assume that \(\alpha_i - \alpha_4 \in \mathcal{W} \) for some \(i \leq 3 \), i.e. there exists \(s, 1 \leq s \leq 4 \), such that \(\alpha_i - \alpha_4 \in \{\pm \beta \pm \alpha_s\} \). Since \(\alpha_4 \) is orthogonal to \(\beta \) and to \(\alpha_i \), for \(1 \leq i \leq 3 \), it follows that \(\alpha_i - \alpha_4 \) must be equal to \(\pm \beta - \alpha_i \), leading to the contradiction that \(0 = \beta \pm \alpha_i \in \mathcal{W} \). Therefore \(\alpha_i - \alpha_4 \in \mathcal{R}(h) \). A similar argument shows that \(\beta + 2\alpha_4 - \alpha_i \in \mathcal{R}(h) \).

Now, since the scalar product of these two roots of \(h \) is \(\langle \alpha_i - \alpha_4, \beta + 2\alpha_4 - \alpha_i \rangle = -1 \), it follows again by (11) that their sum \(\beta + \alpha_4 \) also belongs to \(\mathcal{R}(h) \), contradicting the fact that \(\beta + \alpha_4 \in \mathcal{W}(m) \). This finishes the proof of the claim that \(n = 3 \).
Since the determinant of the Gram matrix \(\langle \alpha_i, \alpha_j \rangle \) is equal to \(\frac{5}{16} \), the vectors \(\{ \alpha_i \}_{1 \leq i \leq 3} \) are linearly independent. Thus the roots of \(\mathfrak{g} \) given by \([7]\) can not belong to \(\mathcal{W} \), and therefore \(\{ \alpha_i - \alpha_j \}_{1 \leq i, j \leq 3} \) belong to \(\mathcal{R}(\mathfrak{h}) \).

Concluding, we have proven that \(n = 3 \) and that the following inclusions hold (after introducing the notation \(\gamma_i := \alpha_j + \alpha_k \) for all permutations \(\{i, j, k\} \) of \(\{1, 2, 3\} \)):

\[
\begin{align*}
\{ \gamma_i - \gamma_j \}_{1 \leq i \neq j \leq 3} & \subseteq \mathcal{R}(\mathfrak{h}), \\
\{ \gamma_i - \gamma_j \}_{1 \leq i \neq j \leq 3} & \cup \{ \pm \gamma_i \}_{1 \leq i \leq 3} \subseteq \mathcal{R}(\mathfrak{g}),
\end{align*}
\]

where \(\langle \gamma_i, \gamma_j \rangle = \delta_{ij} \), for all \(1 \leq i, j \leq 3 \).

Since these sets are closed root systems and we are interested in the representation of \(M \) as a homogeneous space \(G/H \) with the smallest possible group \(G \), we may assume that we have equality in \((8) \). Hence \(\mathcal{R}(\mathfrak{h}) = \{ \gamma_i - \gamma_j \}_{1 \leq i \neq j \leq 3} \) with \(\{ \gamma_i \}_{1 \leq i \leq 3} \) an orthonormal basis, (which is exactly the root system of the Lie algebra \(\mathfrak{su}(3) \)), and \(\mathcal{R}(\mathfrak{g}) = \{ \gamma_i - \gamma_j \}_{1 \leq i \neq j \leq 3} \cup \{ \pm \gamma_i \}_{1 \leq i \leq 3} \), which is the root system of \(\mathfrak{so}(7) \). We conclude that the only possible solution is the simply connected homogeneous space \(\text{SO}(7)/U(3) \).

It remains to check that this space indeed carries a homogeneous almost quaternionic-Hermitian structure. Using the sequence of inclusions

\[
\mathfrak{u}(3) \subset \mathfrak{so}(6) \subset \mathfrak{so}(7),
\]

we see that the isotropy representation \(\mathfrak{m} \) of \(\text{SO}(7)/U(3) \) is the direct sum of the restriction to \(U(3) \) of the isotropy representation of the sphere \(\text{SO}(7)/\text{SO}(6) \), (which is just the standard representation of \(U(3) \) on \(\mathbb{C}^3 \)), and of the isotropy representation of \(\text{SO}(6)/U(3) \), which is \(\Lambda^2(\mathbb{C}^3) \) (cf. [2], p. 312):

\[
\mathfrak{m} = \mathbb{C}^3 \oplus \Lambda^2(\mathbb{C}^3).
\]

Let \(I \) denote the complex structure of \(\mathfrak{m} \). After identifying \(U(1) \) with the center of \(U(3) \) via the diagonal embedding, an element \(z \in U(1) \) acts on \(\mathfrak{m} \) by complex multiplication with \(z^3 \), i.e. \(\iota(z) = z^3 \). Since \(\Lambda^2(\mathbb{C}^3) = (\mathbb{C}^3)^* \) as complex \(\text{SU}(3) \)-representations, it follows that the restriction to \(\text{SU}(3) \) of the isotropy representation \(\mathfrak{m} \) is \(\mathbb{C}^3 \oplus (\mathbb{C}^3)^* \), and thus carries a quaternionic structure, i.e. a complex anti-linear automorphism \(J \). We claim that a homogeneous almost quaternionic-Hermitian structure on \(\text{SO}(7)/U(3) \) in the sense of Definition 2.1 is given by \(\rho : U(3) \to SO(3) \) and \(\varphi : so(3) \simeq \text{Im}(\mathbb{H}) \to \text{End}^-(\mathfrak{m}) \) defined by

\[
\rho(A) = \det(A), \quad \varphi(i) = I, \quad \varphi(j) = J, \quad \varphi(k) = K.
\]

where \(\det(A) \in U(1) \) is viewed as an element in \(SO(3) \) via the composition

\[
U(1) = S(\mathbb{C}) \to S(\mathbb{H}) = \text{Spin}(3) \to SO(3).
\]

Indeed, the only thing to check is the equivariance of \(\varphi \), i.e.

\[
(9) \quad \varphi(\rho(A)M\rho(A)^{-1}) = \varphi(A)\varphi(M)\varphi(A)^{-1}, \quad \forall M \in so(3), \forall A \in U(3).
\]

Write \(A = zB \) with \(B \in SU(3) \). Then \(\rho(A) = z^3 \), \(\iota(A) = z^3\iota(B) \) and \(\iota(B) \) commutes with \(I, J, K \), thus with \(\varphi(M) \). The relation \([9]\) is trivially satisfied for \(M = i \), whereas for \(M = j \) or \(M = k \) one has \(Mz = zM = z^{-1}M \) and similarly \(\varphi(M)\iota(z)\varphi(M) = \iota(z^{-1})\varphi(M) \), so

\[
\varphi(\rho(A)M\rho(A)^{-1}) = \varphi(z^3Mz^{-3}) = \varphi(z^6M) = \varphi(z^8)\varphi(M) = \iota(z^2)\varphi(M) = \iota(A)\varphi(M)\iota(A)^{-1}.
\]
This finishes the proof of the theorem. □

APPENDIX A. Root systems

For the basic theory of root systems we refer to [1] and [16].

Definition A.1. A set \mathcal{R} of vectors in a Euclidean space $(V, \langle \cdot, \cdot \rangle)$ is called a root system if it satisfies the following conditions:

- **R1:** \mathcal{R} is finite, $\text{span}(\mathcal{R}) = V$, $0 \notin \mathcal{R}$.
- **R2:** If $\alpha \in \mathcal{R}$, then the only multiples of α in \mathcal{R} are $\pm \alpha$.
- **R3:** $\frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$, for all $\alpha, \beta \in \mathcal{R}$.
- **R4:** $s_\alpha : \mathcal{R} \to \mathcal{R}$, for all $\alpha \in \mathcal{R}$ ($s_\alpha : V \to V$, $s_\alpha(v) := v - \frac{2\langle \alpha, v \rangle}{\langle \alpha, \alpha \rangle} \alpha$).

Let G be a compact semi-simple Lie group with Lie algebra \mathfrak{g} endowed with an ad_g-invariant scalar product. Fix a Cartan sub-algebra $\mathfrak{t} \subset \mathfrak{g}$ and let $\mathcal{R}(\mathfrak{g}) \subset \mathfrak{t}^*$ denote its root system. It is well-known that $\mathcal{R}(\mathfrak{g})$ satisfies the conditions in Definition A.1. Conversely, every set of vectors satisfying the conditions in Definition A.1 is the root system of a unique semi-simple Lie algebra of compact type.

Remark A.2 (Properties of root systems). Let \mathcal{R} be a root system. If $\alpha, \beta \in \mathcal{R}$ such that $\beta \neq \pm \alpha$ and $\|\beta\|^2 \geq \|\alpha\|^2$, then either $\langle \alpha, \beta \rangle = 0$ or

$$\left(\frac{\|\beta\|^2}{\|\alpha\|^2}, \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \right) \in \{(1, \pm 1), (2, \pm 2), (3, \pm 3)\}.$$ (10)

In other words, either the scalar product of two roots vanishes, or its absolute value equals half the square length of the longest root. Moreover,

$$\beta - \text{sgn} \left(\frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \right) k\alpha \in \mathcal{R}, \quad \text{for all } k \in \mathbb{Z}, 1 \leq k \leq \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle}.$$ (11)

Definition A.3 ([11]). A set \mathcal{P} of vectors in a Euclidean space $(V, \langle \cdot, \cdot \rangle)$ is called a root sub-system if it satisfies the conditions R1 - R3 from Definition A.1 and if the set $\overline{\mathcal{P}}$ obtained from \mathcal{P} by taking all possible reflections is a root system.

References

Andrei Moroianu
Université de Versailles-St Quentin
Laboratoire de Mathématiques
UMR 8100 du CNRS
45 avenue des États-Unis
78035 Versailles and CMLS
École Polytechnique
UMR 7640 du CNRS
91128 Palaiseau, France
E-Mail: am@math.polytechnique.fr

Mihaela Pilca
Fakultät für Mathematik
Universität Regensburg
Universitätsstr. 31 D-93040 Regensburg, Germany and Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21, Calea Griviței Str. 010702-Bucharest, Romania
E-Mail: Mihaela.Pilca@mathematik.uni-regensburg.de

Uwe Semmelmann
Institut für Geometrie und Topologie
Fachbereich Mathematik
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart, Germany
E-Mail: uwe.semmelmann@mathematik.uni-stuttgart.de

2012-015 Steinke, G.F.; Stroppel, M.J.: Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane

2012-014 Steinke, G.F.; Stroppel, M.J.: Finite elation Laguerre planes admitting a two-transitive group on their set of generators

2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces

2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs

2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces

2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations

2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces

2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring

2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily

2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory

2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations

2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces

2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park

2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group

2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression

2011-023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence

2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors

2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks

2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions

2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function

2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two

2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_2-structures
2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
2010-016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds
2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $SO(3)$
2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
2010-008 Popitz, S.; Stroppel, M.: Polarisations of Schellhammer Planes
2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010-001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^3 and of the 3-torus
2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $PSL(2,q)$
2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions