# Preprints

**Alla, A.; Schmidt, A. & Haasdonk, B.:**Model order reduction approaches for infinite horizon optimal control problems via the HJB equation,

*University of Stuttgart,*

**2016**.

**Bhatt, A. & VanGorder, R.:**Chaos in a non-autonomous nonlinear system describing asymmetric water wheels,

**2017**.

**Carlberg, K.; Brencher, L.; Haasdonk, B. & Barth, A.:**Data-driven time parallelism via forecasting,

**2016**.

**De Marchi, S.; Iske, A. & Santin, G.:**Image Reconstruction from Scattered Radon Data by Weighted Positive Definite Kernel Functions,

**2017**.

**Fehr, J.; Grunert, D.; Bhatt, A. & Hassdonk, B.:**A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems,

**2017**.

**Fritzen, F.; Haasdonk, B.; Ryckelynck, D. & Schöps, S.:**An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem,

*University of Stuttgart,*

**2016**.

**Geßner, T.; Haasdonk, B.; Lenz, M.; Metscher, M.; Neubauer, R.; Ohlberger, M.; Rosenbaum, W.; Rumpf, M.; Schwörer, R.; Spielberg, M. & Weikard, U.:**A Procedural Interface for Multiresolutional Visualization of General Numerical Data,

*University of Bonn,*

**1999**.

**Haasdonk, B.:**Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction for Stationary and Instationary Problems,

*IANS, University of Stuttgart, Germany,*

**2014**.

**Haasdonk, B. & Ohlberger, M.:**Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations,

*University of Freiburg, Institute of Applied Mathematics,*

**2006**.

**Haasdonk, B.; Ohlberger, M. & Rozza, G.:**A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators,

*University of Münster,*

**2007**.

**Haasdonk, B.; Ohlberger, M.; Rumpf, M.; Schmidt, A. & Siebert, K.-G.:**h-p-Multiresolution Visualization of Adaptive Finite Element Simulations,

*Mathematics Department, University of Freiburg,*

**2001**.

**Haasdonk, B.; Poluru, B. & Teynor, A.:**Presto-Box 1.1 Library Documentation,

*IIF-LMB, Universität Freiburg,*

**2003**.

**Haasdonk, B.; Salomon, J. & Wohlmuth, B.:**A Reduced Basis Method for Parametrized Variational Inequalities,

*University of Stuttgart,*

**2012**.

**Köppl, T.; Santin, G.; Haasdonk, B. & Helmig, R.:**Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques,

*University of Stuttgart,*

**2017**.

**Pekalska, E. & Haasdonk, B.:**Kernel Quadratic Discriminant Analysis with Positive and Indefinite Kernels,

*University of Münster,*

**2008**.

**Tempel, P.; Schmidt, A.; Haasdonk, B. & Pott, A.:**Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots,

*University of Stuttgart,*

**2017**.

**Wirtz, D. & Haasdonk, B.:**An Improved Vectorial Kernel Orthogonal Greedy Algorithm,

*University of Stuttgart,*

**2012**.

**Wirtz, D.; Karajan, N. & Haasdonk, B.:**Model order reduction of multiscale models using kernel methods,

*SRC SimTech, University of Stuttgart, Germany,*

**2012**.

**Wirtz, D.; Sorensen, D. & Haasdonk, B.:**A-posteriori error estimation for DEIM reduced nonlinear dynamical systems,

*University of Stuttgart,*

**2012**.

**Wittwar, D.; Schmidt, A. & Haasdonk, B.:**Reduced Basis Approximation for the Discrete-time Parametric Algebraic Riccati Equation,

*University of Stuttgart,*

**2017**.