Brit Steiner
Pfaffenwaldring 57
70569 Stuttgart




Directly to

zur Startseite

Andreas Schmidt

Andreas  Schmidt

This picture shows  
				Andreas Schmidt
Phone 0049 711 685-62059
Room 7.326
Email address
Universität Stuttgart
Institute for Applied Analysis and Numerical Simulation
Pfaffenwaldring 57
70569  Stuttgart

Tuesday, 10:00 - 11:45

Research Interests

I am working on the application of reduced basis methods for the fast calculation of feedback controllers for parameter dependent partial differential equations.


Alla, A.; Schmidt, A. & Haasdonk, B.: Benner, Peter and Ohlberger, Mario and Patera, Anthony and Rozza, Gianluigi and Urban, Karsten (Eds.), Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation, Model Reduction of Parametrized Systems, Springer International Publishing, 2017, 333-347. Zeige BibTex Zeige Abstract

Dibak, C.; Schmidt, A.; Dürr, F.; Haasdonk, B. & Rothermel, K.: Server-Assisted Interactive Mobile Simulations for Pervasive Applications, Proceedings of the 15th IEEE International Conference on Pervasive Computing and Communications (PerCom), University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Information Technology, Germany, IEEE, 2017, 1-10. Zeige BibTex Zeige Abstract

Schmidt, A.; Dihlmann, M. & Haasdonk, B.: Basis generation approaches for a reduced basis linear quadratic regulator, Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling, 2015, 713-718. Zeige BibTex

Schmidt, A. & Haasdonk, B.: Reduced basis method for H2 optimal feedback control problems, IFAC-PapersOnLine, 2016, 49, 327 - 332. Zeige BibTex Zeige Abstract

Schmidt, A. & Haasdonk, B.: Reduced basis approximation of large scale parametric algebraic Riccati equations, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2017. Zeige BibTex

Tempel, P.; Schmidt, A.; Haasdonk, B. & Pott, A.: Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots, Computational Kinematics, Springer International Publishing, 2017, 198-205. Zeige BibTex


Alla, A.; Haasdonk, B. & Schmidt, A.: Feedback control of parametrized PDEs via model order reduction and dynamic programming principle, University of Stuttgart, 2017. Zeige BibTex

Schmidt, A. & Haasdonk, B.: Data-driven surrogates of value functions and applications to feedback control for dynamical systems, University of Stuttgart, 2017. Zeige BibTex

Wittwar, D.; Schmidt, A. & Haasdonk, B.: Reduced Basis Approximation for the Discrete-time Parametric Algebraic Riccati Equation, University of Stuttgart, 2017. Zeige BibTex