This image shows Wolfgang L.  Wendland

Wolfgang L. Wendland

Prof. (em.) Dr.-Ing. Dr. h.c.

Prof. emeritus
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.117

  1. 2022

    1. G. C. Hsiao, T. Sánchez-Vizuet, and W. L. Wendland, “A Boundary-Field Formulation for Elastodynamic Scattering,” Journal of Elasticity, 2022, doi: https://doi.org/10.1007/s10659-022-09964-7.
    2. M. Hassan et al., “Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework,” Journal of chemical theory and computation, vol. 18, no. 10, Art. no. 10, 2022, doi: 10.1021/acs.jctc.2c00008.
    3. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces,” JMAA, vol. 516, no. 1, 126464, Art. no. 1, 126464, 2022, [Online]. Available: https://doi.org/10.1016/j.jmaa.2022.126464
    4. G. Santin, T. Karvonen, and B. Haasdonk, “Sampling based approximation of linear functionals in reproducing kernel Hilbert spaces,” BIT - numerical mathematics, vol. 62, no. 1, Art. no. 1, 2022, doi: 10.1007/s10543-021-00870-3.
    5. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces,” Calc. Var. Partial Differential Equations, vol. 61, p. Paper No. 198 (2022) 47 pp., 2022.
  2. 2021

    1. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coefficient,” Math. Methods Appl. Sci., vol. 44, no. 12, Art. no. 12, 2021, doi: 10.1002/mma.7167.
    2. G. C. Hsiao and W. L. Wendland, “On the propagation of acoustic waves in a thermo-electro-magneto-elastic solid,” Applicable Analysis, vol. 101 (2022), no. 0, Art. no. 0, 2021, doi: 10.1080/00036811.2021.1986027.
    3. T. B. Berrett, L. Gyorfi, and H. Walk, “Strongly universally consistent nonparametric regression and    classification with privatised data,” ELECTRONIC JOURNAL OF STATISTICS, vol. 15, no. 1, Art. no. 1, 2021, doi: 10.1214/21-EJS1845.
    4. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition,” Discrete Contin. Dyn. Syst., vol. 41, no. 9, Art. no. 9, 2021, doi: 10.3934/dcds.2021042.
    5. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coeffici,” Math. Methods Appl. Sci., vol. 44, no. 12, Art. no. 12, 2021, doi: 10.1002/mma.7167.
    6. G. C. Hsiao and W. L. Wendland, Boundary integral equations, vol. 164. in Applied Mathematical Sciences, vol. 164. Springer, Cham, 2021, p. xx+783. doi: 10.1007/978-3-030-71127-6.
  3. 2020

    1. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor,” Complex Variables and Elliptic Equations, vol. 65, no. 1, Art. no. 1, 2020, doi: 10.1080/17476933.2019.1631293.
  4. 2019

    1. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem,” in Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday, S. Rogosin and A. O. Celebi, Eds., in Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday. , Cham: Springer International Publishing, 2019, pp. 237--260. doi: 10.1007/978-3-030-02650-9_12.
    2. M. Kohr and W. L. Wendland, “Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach,” Journal de Mathématiques Pures et Appliquées, no. 131, Art. no. 131, Nov. 2019, doi: https://doi.org/10.1016/j.matpur.2019.04.002.
  5. 2018

    1. H. Harbrecht, W. L. Wendland, and N. Zorii, “Minimal energy problems for strongly singular Riesz kernels,” Mathematische Nachrichten, no. 291, Art. no. 291, 2018, doi: https://doi.org/10.1002/mana.201600024.
    2. G. C. Hsiao, O. Steinbach, and W. L. Wendland, “Boundary Element Methods: Foundation and Error Analysis,” vol. Encyclopedia of Computational Mechanics Second Edition, p. 62, 2018, doi: https://doi.org/10.1002/9781119176817.ecm2007.
    3. S. Haesaert, S. Weiland, and C. W. Scherer, “A separation theorem for guaranteed $H_2$ performance through matrix inequalities,” Automatica, vol. 96, pp. 306–313, 2018, doi: 10.1016/j.automatica.2018.07.002.
    4. M. Kohr and W. L. Wendland, “Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds,” Calc. Var. Partial Differential Equations, vol. 57, no. 6, Art. no. 6, 2018, doi: 10.1007/s00526-018-1426-7.
    5. M. Kohr and W. L. Wendland, “Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces,” Journal of Mathematical Fluid Mechanics, vol. 4, no. 20, Art. no. 20, 2018, doi: https://doi.org/10.1007/s00021-018-0394-1.
  6. 2017

    1. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz energy problems for strongly singular kernels,” Math. Nachr., 2017, doi: 10.1002/mana.201600024.
    2. V. Maz’ya, D. Natroshvili, E. Shargorodsky, and W. L. Wendland, Eds., Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume, no. 258. Birkhäuser/Springer International, 2017.
    3. M. Kohr, S. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani,” J of Mathematical Fluid Mechanics, vol. 19, pp. 203–238, 2017.
    4. M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle,” Monatshefte für Mathematik, vol. 483, pp. 269–302, 2017, doi: MOFM-D16-00078.
    5. R. Gutt, M. Kohr, S. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains,” Math. Meth. Appl. Sci., vol. 18, pp. 7780–7829, 2017, doi: 10.1002/mma.4562.
    6. R. Gutt, M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 40, no. 18, Art. no. 18, Dec. 2017, doi: 10.1002/mma.4562.
    7. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection-dominated problems,” MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, vol. 27, no. 13, Art. no. 13, Dec. 2017, doi: 10.1142/S0218202517500476.
    8. A. Chertock, P. Degond, and J. Neusser, “An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 335, pp. 387–403, Apr. 2017, doi: 10.1016/j.jcp.2017.01.030.
  7. 2016

    1. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds,” Journal of Mathematical Fluid Dynamics, vol. DOI 10.1007/s 00021-16-0273-6, 2016.
    2. R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on    Lipschitz domains in compact Riemannian manifolds,” MATHEMATISCHE NACHRICHTEN, vol. 289, no. 4, Art. no. 4, Mar. 2016, doi: 10.1002/mana.201400365.
    3. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds,” J. Dyn. Diff. Equations, vol. DOI 110.1007/s10884-014-9359-0, 2016.
    4. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system,” J. Math. Fluid Mechanics, vol. 18, pp. 293–329, 2016.
    5. J. Gisselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, Art. no. 4, Oct. 2016, doi: 10.1093/imanum/drv052.
    6. H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid solution of minimal Riesz energy problems,” Numer. Methods Partial Diff. Equ., vol. 32, pp. 1535–1552, 2016.
    7. M. Kohr, L. de Cristoforis, S. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PED systems,” ZAMP, vol. 67:116, pp. 1–30, 2016.
    8. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 18, no. 2, Art. no. 2, Jun. 2016, doi: 10.1007/s00021-015-0236-3.
  8. 2015

    1. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 66, no. 3, Art. no. 3, Jun. 2015, doi: 10.1007/s00033-014-0439-0.
    2. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds,” JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, vol. 27, no. 3–4, Art. no. 3–4, Dec. 2015, doi: 10.1007/s10884-014-9359-0.
    3. T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman  system in Lipschitz domains,” Math. Meth. Appl. Sciences, vol. 38, pp. 3615–3628, 2015, doi: 10.1002/mma3302.
    4. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains,” IMA J. Num. Analysis, vol. 35, pp. 834–858, 2015.
    5. J. Giesselmann and T. Pryer, “ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A    QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL,” ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION    MATHEMATIQUE ET ANALYSE NUMERIQUE, vol. 49, no. 1, Art. no. 1, Jan. 2015, doi: 10.1051/m2an/2014033.
    6. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3,” ZAMP, vol. 66, pp. 833–846, 2015.
    7. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, Art. no. 2, Apr. 2015, doi: 10.1093/imanum/dru009.
  9. 2014

    1. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains,” in Complex Analysis and Potential Theory with Applications, A. G. T. Aliev Azerogly and S. V. Rogosin, Eds., in Complex Analysis and Potential Theory with Applications. , Cambridge Sci. Publ., 2014, pp. 111–124.
    2. M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds,” Communications in Pure and Applied Analysis, vol. 13, pp. 1–28, 2014, doi: 03934/cpaa.2013.13.
    3. W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” Math. Methods Appl. Sci., vol. 37 (13), pp. 1924–1955, 2014.
    4. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains,” J. Math. Fluid Mechanics, vol. 16, pp. 595–830, 2014.
    5. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on C^k-1,1 manifolds,” Math. Nachr., vol. 287, pp. 48–69, 2014.
  10. 2013

    1. D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n,” ZAMM, vol. 93, pp. 762–776, 2013, doi: 10.1002/zamm.20100185.
    2. M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators,” International Mathematics Research Notices, vol. 2013 (19), pp. 4499–4588, 2013, doi: 10.1093/imnr/run999.
    3. D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications,” Math. Methods Appl. Sci., vol. 36, pp. 1631–1648, 2013, doi: 10.1002/mma.2716.
    4. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains,” Potential Analysis, vol. 38, pp. 1123–1171, 2013, doi: 10.1007/s.11118-012-9310-0.
    5. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, pp. 446–458, 2013, doi: 10.1002/zamm.201100194.
  11. 2012

    1. U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, Eds., “Fast Boundary Element Methods on Engineering and Industrial Applications.” Springer, p. 269, 2012.
    2. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” J. Math. Anal. Appl., vol. 393, no. 2, Art. no. 2, 2012, doi: 10.1016/j.jmaa.2012.04.019.
    3. M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz  domains on Riemannian manifolds: Applications to Brinkman operators.,” Mathematica, vol. 54, pp. 159–176, 2012.
    4. M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model---a boundary integral  formulation,” Appl. Anal., vol. 91, no. 2, Art. no. 2, 2012, doi: 10.1080/00036811.2011.614604.
  12. 2011

    1. W. L. Wendland, “Boundary element domain decomposition with Trefftz elements and Levi  fuctions,” in 19th Intern. Conf. on Computer Methods in Mechanics, in 19th Intern. Conf. on Computer Methods in Mechanics. Warsaw: Publ. House of Warsaw Univ. Technology, 2011.
    2. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators  on Lipschitz and $C^1$ domains in Riemannian manifolds,” Discrete Contin. Dyn. Syst. Ser. B, vol. 15, no. 4, Art. no. 4, 2011, doi: 10.3934/dcdsb.2011.15.999.
    3. T. A. Mel’nyk, Iu. A. Nakvasiuk, and W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick  junction and boundary integral equations for the homogenized problem,” Math. Methods Appl. Sci., vol. 34, no. 7, Art. no. 7, 2011, doi: 10.1002/mma.1395.
  13. 2010

    1. C. W. Scherer and S. Weiland, “Linear Matrix Inequalities in Control,” in The Control Systems Handbook, Second Edition, W. S. Levine, Ed., in The Control Systems Handbook, Second Edition. , CRC Press, 2010, pp. 1–30. [Online]. Available: https://www.taylorfrancis.com/books/e/9781420073652/chapters/10.1201%2Fb10384-61
    2. A. Degeratu and K. Wendland, “Friendly giant meets pointlike instantons? On a new conjecture by John McKay,” in Moonshine: the first quarter century and beyond, vol. 372, in Moonshine: the first quarter century and beyond, vol. 372. , Cambridge Univ. Press, Cambridge, 2010, pp. 55--127.
  14. 2008

    1. G. C. Hsiao and W. L. Wendland, Boundary integral equations, vol. 164. in Applied Mathematical Sciences, vol. 164. Berlin: Springer-Verlag, 2008, p. xx+618. doi: 10.1007/978-3-540-68545-6.
To the top of the page