Directly to

zur Startseite

Iryna Rybak

Priv.-Doz. Dr.
Iryna  Rybak

This picture shows  
				Iryna Rybak
Phone 0049 711 685-65508
Fax 0049 711 685-65599
Room 7.163
Email address
Address
University of Stuttgart
Institute of Applied Analysis and Numerical Simulation
Pfaffenwaldring 57
70569  Stuttgart
Germany
Consultation

Wednesday, 9:00 - 10:00



Research Interests

  • Modeling flow and transport processes in porous media
  • Coupling free flow and porous medium systems
  • Thermodynamically constrained averaging theory (TCAT)
  • Numerical upscaling, multiscale methods
  • Domain decomposition methods, time splitting schemes
  • Development of efficient numerical algorithms for multiphysics problems

Projects

2016-2017 Principal investigator, ``Mathematical modeling and numerics for transition regions between porous medium and free flow systems'',  German Research Foundation, RY 126/2-2
2012-2015 Principal investigator, ``Mathematical modeling and numerics for transition regions between porous medium and free flow systems'',  German Research Foundation, RY 126/2-1
2007-2009 Project participant, ``Development of multilevel algorithms for simulation of fluid flows in porous media'', Belarusian Republican Foundation for Fundamental Research, F07MS-054
2004-2007 Project participant, ``Hydrogeological and geo-environmental simulations: a contribution to the algorithms and advanced applications'', INTAS-03-50-4395
2004-2006 Principal investigator, ``Development of monotone and conservative difference schemes for problems of mathematical physics with mixed derivatives'', Belarusian Republican Foundation for Fundamental Research, F04M-136

Publications

Magiera, J.; Rohde, C. & Rybak, I.: A hyperbolic-elliptic model problem for coupled surface-subsurface flow, Transp. Porous Media, 2016, 114, 425-455. Zeige BibTex

Rybak, I. & Magiera, J.: T. Dickopf et al. (Eds.), Decoupled schemes for free flow and porous medium systems, Domain Decomposition Methods in Science and Engineering XXII, Springer, 2016, 104, 613-621. Zeige BibTex

Rybak, I.; Gray, W. & Miller, C.: Modeling two-fluid-phase flow and species transport in porous media, J. Hydrology, 2015, 521, 565-581. Zeige BibTex

Rybak, I.; Magiera, J.; Helmig, R. & Rohde, C.: Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems, Comput. Geosci., 2015, 19, 299-309. Zeige BibTex

Rybak, I.: Fuhrmann, J. and Ohlberger, M. and Rohde, C. (Eds.), Coupling free flow and porous medium flow systems using sharp interface and transition region concepts, Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, FVCA 7, Springer, 2014, 78, 703-711. Zeige BibTex

Rybak, I. & Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems, J. Comput. Phys., 2014, 272, 327-342. Zeige BibTex

Jackson, A. S.; Rybak, I.; Helmig, R.; Gray, W. G. & Miller, C. T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models, Adv. Water Res., 2012, 42, 71-90. Zeige BibTex

Mosthaf, K.; Baber, K.; Flemisch, B.; Helmig, R.; Leijnse, A.; Rybak, I. & Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow, Water Resour. Res., 2011, 47, W10522. Zeige BibTex

Ewing, R.; Iliev, O.; Lazarov, R.; Rybak, I. & Willems, J.: A simplified method for upscaling composite materials with high contrast of the conductivity, SIAM J. Sci. Comp., 2009, 31, 2568-2586. Zeige BibTex

Iliev, O. & Rybak, I.: On numerical upscaling for flows in heterogeneous porous media, Comput. Methods Appl. Math., 2008, 8, 60-76. Zeige BibTex

Ewing, R.; Iliev, O.; Lazarov, R. & Rybak, I.: On two-level preconditioners for flow in porous media, Fraunhofer ITWM, 2007. Zeige BibTex

Iliev, O. & Rybak, I.: On approximation property of multipoint flux approximation method, Fraunhofer ITWM, 2007. Zeige BibTex

Iliev, O.; Rybak, I. & Willems., J.: On upscaling heat conductivity for a class of industrial problems, Fraunhofer ITWM, 2007. Zeige BibTex

Iliev, O. & Rybak, I.: On numerical upscaling of flow in anisotropic porous media, Mathematisches Forschungsinstitut Oberwolfach Report No. 20, 2005, 1162–1165. Zeige BibTex

Matus, P.; Melnik, R.; Wang, L. & Rybak, I.: Applications of fully conservative schemes in nonlinear thermoelasticity: modelling shape memory materials, Math. Comp. Simulation, 2004, 65, 489-509. Zeige BibTex

Matus, P. & Rybak, I.: Difference schemes for elliptic equations with mixed derivatives, Comput. Methods Appl. Math., 2004, 4, 494-505. Zeige BibTex

Rybak, I.: Computational dynamics of shape memory alloys, Proc. of Lobachevski Mathematical Center, Kazan, 2004, 209-218. Zeige BibTex

Rybak, I.: Monotone and conservative difference schemes for nonlinear nonstationary equations and equations with mixed derivatives, Institute of Mathematics of the National Academy of Sciences of Belarus, 2004. Zeige BibTex

Rybak, I.: Monotone difference schemes for equations with mixed derivatives in the case of boundary conditions of the third type, Proceedings of the National Academy of Sciences of Belarus, Series of Physical-Mathematical Sciences, 2004, 40, 37-42. Zeige BibTex

Rybak, I.: Monotone and conservative difference schemes for equations with mixed derivatives, Dokl. Akad. Navuk Belarusi, 2004, 48, 45-48. Zeige BibTex

Rybak, I.: Monotone and conservative difference schemes for elliptic equations with mixed derivatives, Math. Model. Anal., 2004, 9, 169-178. Zeige BibTex

Matus, P.; Melnik, R. & Rybak, I.: Fully conservative difference schemes for nonlinear models describing dynamics of materials with shape memory, Dokl. Akad. Navuk Belarusi, 47(1):15–17, 2003., 2003, 47, 15-17. Zeige BibTex

Matus, P. & Rybak, I.: Monotone difference schemes for nonlinear parabolic equations, Differential Equations, 2003, 39, 1013-1022. Zeige BibTex

Melnik, R.; Wang, L.; Matus, P. & Rybak, I.: Computational aspects of conservative difference schemes for shape memory alloys applications, Lecture Notes in Comput. Sci., 2003, 2668, 791-800. Zeige BibTex

Rybak, I.: Difference schemes for nonlinear models describing dynamic behaviour of shape memory alloys, Condensed State Physics: XI Republican Scientific Conference, Grodno, Belarus, April 23–25, 2003, 2003, 200-203. Zeige BibTex


Teaching

Summer semester 2017 Numerical Linear Algebra
Winter semester 2016/17 Computational Fluid Dynamics
Summer semester 2016 Mathematical Modelling
Winter semester 2015/16 Numerical Methods for Multiscale Problems
Winter semester 2014/15 Higher Mathematics I (Linear Algebra and Geometry)
Winter semester 2012/13 Porous Media: Modelling, Analysis and Numerics
Summer semester 2012 Higher Mathematics I (Linear Algebra and Geometry)
Winter semester 2011/12 Higher Mathematics II (Analysis)
Summer semester 2011 Numerical Algorithms for Differential Equations
Winter semester 2010/11 Higher Mathematics I
Summer semester 2010 Higher Mathematics II
Winter semester 2009/10 Higher Mathematics I
Summer semester 2009 Higher Mathematics II
Winter semester 2008/09 Higher Mathematics I

Further information

Peer-Review Activities:

  • Advances in Computational Mathematics
  • Advances in Water Resources (Certificate of Excellence in Reviewing, 2013)
  • Applied Mathematics and Computation
  • Computational and Applied Mathematics
  • Computers and Mathematics with Applications
  • Geofluids
  • IMA Journal of Numerical Analysis
  • Journal of Computational and Applied Mathematics
  • Journal of Computational Physics
  • Journal of Hydrology
  • Journal of Porous Media
  • Nonlinearity
  • Numerical Methods for Partial Differential Equations
  • SIAM Journal on Numerical Analysis
  • Water Resources Research